中国猪业 ›› 2025, Vol. 20 ›› Issue (2): 5-14.doi: 10.16174/j.issn.1673-4645.2025.02.001

• 专题报道 • 上一篇    下一篇

基因编辑异种器官移植供体猪的研究进展

冯沈泂,倪征钰,马 昭,孙尉峻,张林林,杜旭光   

  1. 中国农业大学生物学院农业生物技术国家重点实验室; 东北农业大学;天津 启瓴生物科技有限公司;天津农学院
  • 出版日期:2025-04-30 发布日期:2025-04-25

  • Online:2025-04-30 Published:2025-04-25

摘要: 摘要:异种器官移植作为解决全球器官短缺问题的潜在方案备受瞩目,其中基因编辑猪作为供体来源更是受到广泛关注。与传统器官移植面临诸多难题的情况相比,猪器官移植至人体时,主要会遭遇免疫排斥反应、凝血功能失调以及器官尺寸不匹配等问题。而CRISPR/Cas9等基因编辑技术,能够精准定位猪体内相关基因位点,实现对免疫原性抗原敲除(如敲除GGTA1基因)、补体激活抑制(如抑制β2M基因)、凝血功能调节(如调节vWF基因)以及器官生长控制(如控制GHR基因)等方面的定向改良,针对性地解决猪器官移植面临的问题。此外,引入人类转基因(如hCD47基因),还能进一步增强猪器官的免疫耐受性。目前,在全球范围内,已经成功开展了多例基因编辑猪肾、肝移植至人体的亚临床和临床研究,取得了显著的进展。不过,由于基因编辑工具的种类多样,其作用机制和安全性也存在差异,有一定的技术和安全门槛。因此,本文系统梳理了当前已进入亚临床和临床试验的异种器官移植供体猪所需编辑的关键基因以及具体的编辑手段,探讨与分析基因编辑工具的安全性和效率问题以及当前面临的机遇与挑战。在确保基因编辑安全有效的前提下,为优化相关基因编辑方法和推动后续研究提供一定的参考,以促进异种器官移植技术迈向新的台阶。

关键词: 猪, 基因编辑, 异种器官移植, CRISPR/Cas9, 动物模型

Abstract: Xenotransplantation had attracted much attention as a potential solution to the global organ shortage problem, with gene-edited pigs receiving even more attention as a source of donors. In contrasted to the numerous challenges faced in traditional or gan transplantation, when porcine organs were transplanted into humans, they primarily encounter issued such as immune rejection, coagulation dysfunction, and organ size mismatch. Gene-editing technologies like CRISPR/Cas9 could precisely target relevant gene loci in pigs, enabling targeted improvements in aspects such as the knockout of immunogenic antigens (e.g., knockout of the GGTA1 gene), inhibition of complement activation (e.g., inhibition of the β2M gene), regulation of coagulation function (e.g., regulation of the vWF gene), and control of organ growth (e.g., control of the GHR gene), thereby specifically addressing the problems associated with porcine organ transplantation. Additionally, the introduction of human transgenes(e.g., the hCD47 gene) could further enhance the immune toler ance of porcine organs. Globally, multiple subclinical and clinical studied on the transplantation of genetically edited pig kidneys and livers into humans had been successfully conducted, yielding remarkable progress. However, due to the wide variety of gene-editing tools, there were differences in their mechanisms of action and safety, presenting certain technical and safety thresholds. Therefore, this paper systematically summarized the key genes that need to be edited in donor pigs for xenotransplantation that had entered subclinical and clinical trials and the specific editing methods. It also explored and analyzed the safety and efficiency issues of gene-editing tools, as well as the current opportunities and challenges. On the premise of ensuring the safety and effectiveness of gene editing, this paper aimed to provide some references for optimizing relevant gene-editing methods and promoting subsequent research, so as to advance xenotransplantation technology to a new level.

Key words: pig, gene editing, xenotransplantation, CRISPR/Cas9, animal model

中图分类号:  S828;S814.8

[1] 窦科峰, 张玄, 陶开山. 异种移植存在的问题及国内发展现状[J]. 空军军医大学学报, 2024, 15(1):1-4. DOU KF, ZHANG X, TAO KS. Existing problems and do mestic development of xenotransplantation[J]. Journal of Air Force Medical University, 2024, 15(1):1-4. [2] 张小燕, 王国辉, 韩士超, 等. 国内外异种器官移植的现状及进展[J]. 器官移植, 2024, 15(2):276-281. ZHANG XY, WANG GH, HAN SC, et al. Present situation and progress of xenotransplantation at home and abroad[J]. Organ Transplantation, 2024, 15(2):276-281. [3] 王敏敏. 体外器官支持治疗的进展[J]. 中国血液净化, 2021, 20(8):555-558. WANG MM. The development of extracorporeal organ sup port therapy[J]. Chinese Journal of Blood Purification, 2021, 20(8):555-558. [4] HUANG JF. Expert consensus on clinical trials of human xenotransplantation in China[J]. Health Care Science, 2022, 1(1):7-10. [5] LUNNEY JK, VAN GOOR A, WALKER KE, et al. Importance of the pig as a human biomedical model[J]. Science Transl ational Medicine, 2021, 13(621):eabd5758. [6] 窦科峰, 林智斌, 马先一. 异种移植:从基础到临床的瓶颈与对策[J]. 中国实用外科杂志, 2025, 45(1):5-10. DOU KF, LIN ZB, MA XY. Xenotransplantation: bottlenecks and countermeasures in clinical transformation[J]. Chinese Journal of Practical Surgery, 2025, 45(1):5-10. [7] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clini cal-grade porcine kidney xenotransplant using a human decedent model [J]. American Journal of Transplantation, 2022, 22(4):1037-1053. [8] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation [J]. New England Journal of Medicine, 2022, 386(20):1889-1898. [9] MOAZAMI N, STERN JM, KHALIL K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients[J]. Nature Medicine, 2023, 29(8):1989-1997. [10] HEALTH NL. Two-month study of pig kidney xenotrans plantation gives new hope to the future of the organ supply [EB/OL]. https://nyulangone.org/news/two-month-study-pig -kidney-xenotransplantation-gives-new-hope-future-organ-supply.2025-3-31. [11] REGALADO A. A brain-dead man was attached to a gene edited pig liver for three days[EB/OL]. https://www.technol ogyreview.com/2024/01/18/1086791/brain-dead-man-gene-edited-pig-liver.2025-3-31. [12] LOCKE JE, KUMAR V, ANDERSON D, et al. Normal graft function after pig-to-human kidney xenotransplant [J]. JAMA Surgery, 2023, 158(10):1106. [13] MA SJ, QI RC, HAN SC, et al. Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, deceased human recipient [J]. Chinese Medical Journal, 2024:1-15. [14] WANG Y, CHEN G, PAN DK, et al. Pig-to-human kidney xenotransplants using genetically modified minipigs[J]. Cell Reports Medicine, 2024, 5(10):101744. [15] 万恒易. 全球首例!清华长庚董家鸿院士团队合作完成猪—人肝肾联合异种移植 [EB/OL]. https://www.med.tsinghua.edu. cn/info/1405/3275.htm.2025-3-31. WAN HY. World's first! Tsinghua Changgeng Academician Dong Jiahong's team collaborates to complete a combined porcine-human liver and kidney xenotransplantation[EB/OL]. https://www.med.tsinghua.edu.cn/info/1405/3275.htm.2025-3-31. [16] TAO KS, YANG ZX, ZHANG X, et al. Gene-modified pig to-human liver xenotransplantation [J]. Nature, 2025. doi: 10.1038/s41586-025-08799-1. [17] SCHOOL HM. In a first, genetically edited pig kidney is transplanted into human[EB/OL]. https://hms.harvard.edu/news/first-genetically-edited-pig-kidney-transplanted-human. 2025-03-31. [18] HEALTH NL. First-ever combined heart pump & gene-edited pig kidney transplant gives new hope to patient with terminal illness[EB/OL]. https://nyulangone.org/news/node/34872.2025-3-31. [19] 安徽医科大学. 世界首例!我校一附院孙倍成团队成功完成猪肝移植给右叶巨大肝癌病人[EB/OL]. https://www.ahmu.edu. cn/2024/0524/c4325a157504/page.htm.2025-3-31. ANHUI MEDICAL UNIVERSITY. A world first! Sun beicheng's team at the first affiliated hospital of our university successfully completed pig liver transplantation for a patient with giant liver cancer in the right lobe[EB/OL]. https://www.ahmu.edu.cn/2024/0524/c4325a157504/page.htm.2025-3-31. [20] GRIFFITH BP, GOERLICH CE, SINGH AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. New England Journal of Medicine, 2022, 387(1):35-44. [21] DEBORAH KOTZ. UM medicine faculty-scientists and clinicians perform second historic transplant of pig heart into patient with end-stage cardiovascular disease[EB/OL]. https: //www.medschool.umaryland.edu/news/2023/um-medicine -faculty-scientists-and-clinicians-perform-second-his toric-transplant-of-pig-heart-into-patient-with-end-sta ge-cardiovascular-disease.html.2025-3-31. [22] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982):393-401. [23] SMOOD B, HARA H, SCHOEL LJ, et al. Genetically-engineered pigs as sources for clinical red blood cell transfusion: what pathobiological barriers need to be overcome?[J]. Blood Reviews, 2019, 35:7-17. [24] DAI YF, VAUGHT TD, BOONE J, et al. Targeted disruption of theα-1, 3-galactosyltransferase gene in cloned pigs[J]. Nature Biotechnology, 2002, 20(3):251-255. [25] LAI LX, KOLBER-SIMONDS D, PARK KW, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092. [26] CHENG WM, ZHAO H, YU HH, et al. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer[J]. Reproductive Biology and Endocrinology, 2016, 14(1):77. [27] FENG C, LI XR, CUI HT, et al. Highly efficient generation of GGTA1 knockout pigs using a combination of TALEN mRNA and magnetic beads with somatic cell nuclear transfer [J]. Journal of Integrative Agriculture, 2016, 15(7):1540-1549. [28] RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/ CAS technology in pig-to-human xenotransplantation research[J]. International Journal of Molecular Sciences, 2021, 22(6):3196. [29] ESTRADA JL, MARTENS G, LI P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes [J]. Xenotransplantation, 2015, 22(3):194-202. [30] NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR/Cas9 [J]. Science, 2017, 357(6357):1303-1307. [31] YUE YN, XU WH, KAN YN, et al. Extensive germline genome engineering in pigs [J]. Nature Biomedical Engineering, 2021, 5(2):134-143. [32] WANG J, XU K, LIU T, et al. Production and functional verification of 8-gene (ggta1, cmah, β4galnt2, hcd46, hcd55, hcd59, htbm, hcd39)-edited donor pigs for xenotransplan tation [J]. Cell Proliferation, 2025. doi: 10.1111/cpr.70028. Epub ahead of print. [33] HRYHOROWICZ M, LIPI?SKI D, HRYHOROWICZ S, et al. Application of genetically engineered pigs in biomedical research[J]. Genes, 2020, 11(6):670. [34] COOPER DKC, RAZA SS, CHABAN R, et al. Shooting for the moon: genome editing for pig heart xenotransplantation[J]. The Journal of Thoracic and Cardiovascular Surgery, 2023, 166(3):973-980. [35] YUAN YL, CUI YY, ZHAO DY, et al. Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage[J]. Journal of Translational Medicine, 2024, 22(1):324. [36] BROOM C, UKNIS ME. Methods of treating antibody-mediated rejection in organ transplant patients with c1-esterase inhibitor[P]. USA: US20150147319, 2015-05-28. [37] HARRIS CL, PETTIGREW DM, LEA SM, et al. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay [J]. The Journal of Immunology, 2007, 178(1):352-359. [38] ROOIJAKKERS SHM, VAN STRIJP JAG. Bacterial complement evasion [J]. Molecular Immunology, 2007, 44 (1/2/3): 23-32. [39] JEONG YH, PARK CH, JANG GH, et al. Production of multiple transgenic yucatan miniature pigs expressing human complement regulatory factors, human CD55 CD59 and H-transferase genes[J]. PLoS One, 2013, 8(5):e63241. [40] GOLLACKNER B, GOH SK, QAWI I, et al. Acute vascular rejection of xenografts: roles of natural and elicited xenoreactive antibodies in activation of vascular endothelial cells and in duction of procoagulant activity [J]. Transplantation, 77(11): 1735-1741. [41] WANG Y, DU YN, ZHOU XY, et al. Efficient generation of B2m-null pigs via injection of zygote with TALENs[J]. Scientific Reports, 2016, 6:38854. [42] ZHOU X, LIU Y, TANG C, et al. Generation of genetic modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5[J]. Chinese Journal of Biotechnology, 2022, 38(3):1096-1111. [43] IDE K, WANG H, TAHARA H, et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12):5062-5066. [44] LI J, EZZELARAB MB, AYARES D, et al. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation[J]. Stem Cell Reviews and Reports, 2014, 10(1):79-85. [45] PHELPS CJ, BALL SF, VAUGHT TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6):477-485. [46] HARA H, WITT W, CROSSLEY T, et al. Human dominant negative class II transactivator transgenic pigs effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013, 140(1):39-46. [47] PUGA YUNG G, BONGONI AK, PRADIER A, et al. Release of pig leukocytes and reduced human NK cell recruitment during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood[J]. Xenotransplantation, 2018, 25(1). doi: 10.3760/cma.j.issn.1673-4394.2018.01.022. [48] NOWAK-TERPILOWSKA A, LIPINSKI D, HRYHOROWICZM, et al. Production of ULBP1-KO pigs with human CD55 expression using CRISPR technology[J]. Journal of Applied Animal Research, 2020, 48(1):93-101. [49] SHIMIZU A, YAMADA K. Pathology of renal xenograft rejection in pig to non-human primate transplantation[J]. Clinical Transplantation, 2006, 20(s15):46-52. [50] MIWA Y, YAMAMOTO K, ONISHI A, et al. Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation[J]. Xenotransplantation, 2010, 17(1):26-37. [51] CANTU E, BALSARA K, LI B, et al. Prolonged function of macrophage, von willebrand factor-deficient porcine pulmonary xenografts[J]. American Journal of Transplantation, 2007, 7(1):66-75. [52] PARIS LL, CHIHARA RK, REYES LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro [J]. Xenotransplantation, 2011, 18(4):245-251. [53] CHOI K, SHIM J, KO N, et al. Production of heterozygous alpha 1, 3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39 [J]. Transgenic Research, 2017, 26(2):209-224. [54] WHEELER DG, JOSEPH ME, MAHAMUD SD, et al. Transgenic swine: expression of human CD39 protects against myocardial injury[J]. Journal of Molecular and Cellular Cardiology, 2012, 52(5):958-961. [55] YEOM HJ, KOO OJ, YANG J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10):e46646. [56] OROPEZA M, PETERSEN B, CARNWATH JW, et al. Trans genic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6):522-534. [57] MOHIUDDIN MM, SINGH AK, SCOBIE L, et al. Graft dys function in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report[J]. The Lancet, 2023, 402(10399):397-410. [58] DENNER J. Porcine endogenous retroviruses and xenotransplantation, 2021[J]. Viruses, 2021, 13(11):2156. [59] MAO HZ, LI JY, LIAO GN, et al. The prevention strategies of swine viruses related to xenotransplantation [J]. Virology Journal, 2023, 20(1):121. [60] YANG HQ, ZHANG J, ZHANG XW, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reprod uctive and respiratory syndrome virus[J]. Antiviral Research, 2018, 151:63-70. [61] WANG HY, YANG H, SHIVALILA CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918. [62] XUAN YY, PETERSEN B, LIU PT. Human and pig pluripotent stem cells: from cellular products to organogenesis and beyond[J]. Cells, 2023, 12(16):2075. [63] DUAN XY, CHEN CL, DU C, et al. Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs[J]. Genome Research, 2025. doi: 10.1101/gr.279709.124. [64] TAO JL, BAUER DE, CHIARLE R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing[J]. Nature Communications, 2023, 14:212. [65] ZHANG XH, TEE LY, WANG XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Molecular Therapy-Nucleic Acids, 2015, 4(11):e264. [66] KARVELIS T, GASIUNAS G, YOUNG J, et al. Rapid characterization of CRISPR/Cas9 protospacer adjacent motif sequence elements[J]. Genome Biology, 2015, 16(1):253. [67] WANG Y, BI DF, QIN GS, et al. Cytosine base editor (hA3A BE3-NG)-mediated multiple gene editing for pyramid breeding in pigs[J]. Frontiers in Genetics, 2020, 11:592623. [68] RYCZEK N, HRYHOROWICZ M, LIPINSKI D, et al. Evaluation of the CRISPR/Cas9 genetic constructs in efficient disruption of porcine genes for xenotransplantation purposes along with an assessment of the off-target mutation formation [J]. Genes, 2020, 11(6):713. [69] FISCHER K, RIEBLINGER B, HEIN R, et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1 CMAH and B4GALNT2[J]. Xenotransplantation, 2020, 27(1):e12560. [70] ANZALONE AV, KOBLAN LW, LIU DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7):824-844. [71] YUAN HM, YU TT, WANG LY, et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs[J]. Cellular and Molecular Life Sciences, 2020, 77(4):719-733. [72] FISICARO N, SALVARIS EJ, PHILIP GK, et al. FokI-dCas9 mediates high-fidelity genome editing in pigs[J]. Xenotra nsplantation, 2020, 27(1):e12551.
[1] 王文娜, 齐世宏, 余大为, 黄永业. 基因编辑猪的遗传改良与生物医学应用:技术潜力与现实挑战[J]. 中国猪业, 2025, 20(2): 15-22.
[2] 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34.
[3] 李云蕾, 叶凯文, 熊明福, 李 健, 刘亚星, 李超程, 孔思远, 张永生. 基因编辑技术在猪分子育种中的研究进展与前景展望[J]. 中国猪业, 2025, 20(2): 35-50.
[4] 骆庆龙,练胜举,王 婧,龙次民,刘 梅. 猪肾在生物医学中的应用[J]. 中国猪业, 2025, 20(2): 51-62.
[5] 高祥,王拓原,孙雅妮,崔清明,彭英林,陈晨. 地方猪育种研究进展[J]. 中国猪业, 2025, 20(2): 63-74.
[6] 徐桢,贺媛媛,刘凯,曹亚鸽,李莉,卫恒习,张守全. 烯丙孕素处理对初产母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 75-83.
[7] 李洪,戴琦,熊汉成,吴丽艳. 不同有效精子数的自动仿生输精技术对母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 84-92.
[8] 张汉宁,兰干球,梁晶. 饲料中添加地黄多糖对母猪繁殖性能和育肥猪生长性能的影响[J]. 中国猪业, 2025, 20(2): 93-100.
[9] 杨馨雨, 车炼强, 陈代文, 伍爱民. 铁营养与仔猪腹泻[J]. 中国猪业, 2025, 20(1): 3-11.
[10] 李玉莲, 范觉鑫, 谭 红, 李朝晖, 吴攀峰, 李茜茜, 王 洁, 刘冬明, 吴买生. 复合饲料添加剂对沙子岭猪肥育性能、胴体性能及肌肉品质的影响[J]. 中国猪业, 2025, 20(1): 26-34.
[11] 张 航, 杨宇泽, Jesse Oluwaseun Ayantoye, 董建华, 潘红梅, 赵学明. 猪精子冷冻保存研究进展[J]. 中国猪业, 2025, 20(1): 35-46.
[12] 雷国凤, 陈奎蓉, 和艺云, 梁 晶. 广西地方猪品种肌内脂肪含量及相关基因表达分析[J]. 中国猪业, 2025, 20(1): 47-54.
[13] 杜玉诗, 郭建凤, 王为全. 烟台黑猪和长烟杂交猪繁殖性能及育肥产肉性能比较[J]. 中国猪业, 2025, 20(1): 55-62.
[14] 林 艳, 夏嘉鑫, 周远成, 李 敏, 郑勤琴, 陈莉群, 岳丰雄. 猪肠病毒 G 型的分离鉴定及致病性研究[J]. 中国猪业, 2025, 20(1): 63-72.
[15] 陈 佶, 刘伟华, 魏建超. 猪舍非线性环境因素对猪生产性能影响的研究进展[J]. 中国猪业, 2025, 20(1): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!