中国猪业 ›› 2025, Vol. 20 ›› Issue (2): 35-50.doi: 10.16174/j.issn.1673-4645.2025.02.003

• 专题报道 • 上一篇    下一篇

基因编辑技术在猪分子育种中的研究进展与前景展望

李云蕾,叶凯文,熊明福,李 健,刘亚星, 李超程,孔思远,张永生   

  1. 石河子大学动物科技学院;中国农业科学院(深圳)农业基因组研究所
  • 出版日期:2025-04-30 发布日期:2025-04-25

  • Online:2025-04-30 Published:2025-04-25

摘要: 作为最早被驯化的物种之一,猪的育种改良始终是生猪产业发展的核心驱动力。与生猪传统育种的周期长、性状筛选效率低等不足相比,基因编辑技术能做到精准定位目标基因位点,实现各类如生长发育、抗病能力和繁殖性状等经济性状的定向改良,显著提高生猪的育种效率。此外,在当前严峻的传统育种背景下,基因编辑技术的应用还有助于解决我国生猪生产中面临的挑战。不过由于基因编辑技术的种类繁多,其原理又各不相同,有较高技术门槛;因此,本文系统梳理了当前基因编辑技术的作用原理、主要类型、应用现状,探讨与分析生物伦理安全问题及当前面临的机遇与挑战。在确保生物安全的前提下,为保障肉类安全供给,推动我国生猪种业实现跨越式发展提供一定参考。

关键词: 基因编辑, 猪, 分子育种, 应用, 发展前景, 抗病能力, 繁殖性状

Abstract: As one of the earliest domesticated species, the breeding improvement of pigs had always been the core driving force for the development of the pig industry. Compared with the drawbacks of traditional pig breeding, such as long breeding cycles and low efficiency in trait screening, gene-editing technology could precisely locate target gene loci, achieve targeted improvement of various economic traits such as growth and development, disease resistance, and reproductive traits, and significantly enhance the efficiency of pig breeding. Moreover, in the current challenging context of traditional breeding, the application of gene-editing technology also helped to address the challenges faced in China's pig production. However, due to the wide variety of gene-editing technologies with different principles, there was a relatively high technical threshold. Therefore, this paper systematically summarized the working principles, main types, and application status of current gene - editing technologies, and discussed and analyzed biological and ethical safety issues as well as the current opportunities and challenges. On the premise of ensuring biological safety, it provided certain references for guaranteeing the safe supply of meat and promoting the leap - forward development of China's pig breeding industry, and promoting the leapfrog development of China's pig breeding industry.

Key words: gene editing technology, pig, molecular breeding, application, development prospects, disease resistance, reproductive traits

中图分类号:  S828;S814.8

[1] 王佳昊, 王月, 吴添文, 等. 基因组编辑技术加速猪育种进程[J]. 中国猪业, 2024, 19(2):35-42. WANG JH, WANG Y, WU TW, et al. Genome editing technology accelerates pig breeding[J]. China Swine Industry, 2024, 19(2):35-42. [2] FAN Z, LIU Z, XU K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Science China Life Sciences, 2021, 65(2):362-375. [3] KRASNOVA OA, KAZANTSEVA NP, KUDRIN MR, et al. Productive qualities of hybrid pigs[J]. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2020, 11(14):1-9. [4] 张永前, 王儒梁, 杨松柏, 等. 节粮型种猪选育方法及实践[J]. 猪业科学, 2024, 41(10):40-43. ZHANG YQ, WANG RL, YANG SB, et al. Breeding method and practice of grain-saving breeding pig[J]. Swine Industry Science, 2024, 41(10):40-43. [5] COHEN SN, CHANG AC, BOYER HW, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11):3240-3244. [6] KIM YG, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3):1156-1160. [7] CONG L, ANN RAN F, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [8] TU CF, CHUANG C, YANG TS. The application of new breeding technology based on gene editing in pig industry—a review[J]. Animal Bioscience, 2022, 35(6):791-803. [9] VERMA PJ, SUMER H, LIU J. Applications of genome modulation and editing[M]. New York: Humana Press, 2022. [10] ROZENBERG I, MOSES E, HAREL I. CRISPR-Cas9 genome editing in Nothobranchius furzeri for gene knockout and knock-in[J]. Cold Spring Harbor Protocols, 2023, 2023(2):90-99. [11] DONG OX, YU S, JAIN R, et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9[J]. Nature Communications, 2020, 11(1):1178. [12] QIN L, LI JY, WANG QQ, et al. High-efficient and precise base editing of C?G to T?A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(1):45-56. [13] FU YW, DAI XY, WANG WT, et al. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing[J]. Nucleic Acids Research, 2021, 49(2):969-985. [14] SCHERER S, DAVIS RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10):4951-4955. [15] GAJ T, GERSBACH CA, BARBAS CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnology, 2013, 31(7):397-405. [16] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [17] MALI P, YANG LH, ESVELT KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [18] KOMOR AC, KIM YB, PACKER MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [19] URNOV FD, REBAR EJ, HOLMES MC, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9):636-646. [20] JO YI, KIM H, RAMAKRISHNA S. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology[J]. Cellular and Molecular Life Sciences, 2015, 72(20):3819-3830. [21] CHANDRASEGARAN S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy[J]. Cell & Gene Therapy Insights, 2017, 3(1):33-41. [22] RAMIREZ CL, FOLEY JE, WRIGHT DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers[J]. Nature Methods, 2008, 5(5):374-375. [23] PATTANAYAK V, RAMIREZ CL, KEITH JOUNG J, et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J]. Nature Methods, 2011, 8(9):765-770. [24] BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959):1509-1512. [25] MOSCOU MJ, BOGDANOVE AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501. [26] KHAN Z, KHAN SH, MUBARIK MS, et al. Use of TALEs and TALEN technology for genetic improvement of plants[J]. Plant Molecular Biology Reporter, 2017, 35(1):1-19. [27] BOCH J, BONAS U. Xanthomonas AvrBs3 family-typeⅢ effectors: discovery and function[J]. Annual Review of Phytopathology, 2010, 48:419-436. [28] JOUNG JK, SANDER JD. TALENs: a widely applicable technology for targeted genome editing[J]. Nature Reviews Molecular Cell Biology, 2018, 14(1):49-55. [29] MILLER JC, TAN SY, QIAO GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2):143-148. [30] HUO ZJ, TU J, XU A, et al. Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing[J]. Stem Cell Research, 2019, 34:101360. [31] JUILLERAT A, DUBOIS G, VALTON J, et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases[J]. Nucleic Acids Research, 2014, 42(8):5390-5402. [32] HORVATH P, BARRANGOU R. CRISPR/Cas, the immune system of bacteria and Archaea[J]. Science, 2010, 327(5962):167-170. [33] JIANG FG, DOUDNA JA. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46:505-529. [34] CHEN HF, CHOI J, BAILEY S. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease[J]. Journal of Biological Chemistry, 2014, 289(19):13284-13294. [35] LIU Y, PINTO F, WAN XY, et al. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors[J]. Nature Communications, 2022, 13(1):1937. [36] LI Y, LI SY, WANG J, et al. CRISPR/cas systems towards next-generation biosensing[J]. Trends in Biotechnology, 2019, 37(7):730-743. [37] LI C, CHU W, GILL R A, et al. Computational tools and resources for CRISPR/Cas genome editing[J]. Genomics, Proteomics & Bioinformatics, 2022, 21(1):108-126. [38] FU R, FANG MH, XU K, et al. Generation of GGTA1-/-β2M-/-CIITA-/-pigs using CRISPR/Cas9 technology to alleviate xenogeneic immune reactions[J]. Transplantation, 2020, 104(8):1566-1573. [39] GAUDELLI NM, KOMOR AC, REES HA, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [40] YUAN HM, YU TT, WANG LY, et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs[J]. Cellular and Molecular Life Sciences, 2020, 77(4):719-733. [41] NELSON JW, RANDOLPH PB, SHEN SP, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 2021, 40(3):402-410. [42] QIAN LL, TANG MX, YANG JZ, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 2015, 5:14435. [43] PAN JS, LIN ZS, WEN JC, et al. Application of the modified cytosine base-editing in the cultured cells of Bama minipig[J]. Biotechnology Letters, 2021, 43(9):1699-1714. [44] 曹随忠, 岳成鹤, 李西睿, 等. 锌指核酸酶技术制备肌肉生长抑制素基因敲除的五指山小型猪成纤维细胞[J]. 遗传, 2013, 35(6):778-785. CAO SZ, YUE CH, LI XR, et al. Production of myostatin gene knockout Wuzhishan miniature pig fibroblasts with zinc-finger nucleases[J]. Hereditas (Beijing), 2013, 35(6):778-785. [45] XIE SS, QIAN LL, CAI CB, et al. Safety evaluation of myostatin-edited Meishan pigs by whole genome resequencing analyses[J]. Czech Journal of Animal Science, 2019, 64(7):291-299. [46] SHEN YF, XU KX, YUAN ZM, et al. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer[J]. Journal of Translational Medicine, 2017, 15(1):224. [47] ZHU XX, ZHAN QM, WEI YY, et al. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reproduction in Domestic Animals, 2020, 55(10):1314-1327. [48] LI RQ, ZENG W, MA M, et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Research, 2020, 29(1):149-163. [49] WANG KK, TANG XC, XIE ZC, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Research, 2017, 26(6):799-805. [50] ZHENG QT, LIN J, HUANG JJ, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):9474-9482. [51] YOU WN, LI MJ, QI YL, et al. CRISPR/Cas9-mediated specific integration of Fat-1 and IGF-1 at the p Rosa26 locus[J]. Genes, 2021, 12(7):1027. [52] XIANG GH, REN JL, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cellular and Molecular Life Sciences, 2018, 75(24):4619-4628. [53] ZOU YL, LI ZY, ZOU YJ, et al. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects[J]. Biochemical and Biophysical Research Communications, 2018, 498(4):940-945. [54] LIN J, CAO CW, TAO C, et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes[J]. Journal of Molecular Cell Biology, 2017, 9(5):364-375. [55] LI Z, YANG HY, WANG Y, et al. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting[J]. Journal of Biomedical Research, 2017, 31(5):445-452. [56] WHITWORTH KM, ROWLAND RRR, EWEN CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [57] SUN Q, XU H, AN TQ, et al. Recent progress in studies of porcine reproductive and respiratory syndrome virus 1 in China[J]. Viruses, 2023, 15(7):1528. [58] 赵娅娅, 袁利明, 华进联. 基因编辑技术在猪分子育种中的研究进展及发展趋势[J]. 农业生物技术学报, 2024, 32(8):1939-1948. ZHAO YY, YUAN LM, HUA JL. Research progress and development trend of gene editing technology in pig (Sus scrofa) molecular breeding[J]. Journal of Agricultural Biotechnology, 2024, 32(8):1939-1948. [59] YANG HQ, ZHANG J, ZHANG XW, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Research, 2018, 151:63-70. [60] WANG HT, SHEN LC, CHEN JY, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. International Journal of Biological Sciences, 2019, 15(9):1993-2005. [61] BURKARD C, LILLICO SG, REID E, et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathogens, 2017, 13(2):e1006206. [62] XIE ZC, JIAO HP, XIAO HN, et al. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Research, 2020, 174:104696. [63] QI CY, PANG DX, YANG K, et al. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing[J]. iScience, 2022, 25(10):105268. [64] LIU ZY, ZHANG MJ, HUANG PX, et al. Generation of APN-chimeric gene-edited pigs by CRISPR/Cas9-mediated knock-in strategy[J]. Gene, 2023, 851:147007. [65] XU K, ZHOU YR, MU YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9:e57132. [66] WU WJ, YIN YJ, HUANG J, et al. CRISPR/Cas9-meditated gene knockout in pigs proves that LGALS12 deficiency suppresses the proliferation and differentiation of porcine adipocytes[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2024, 1869(3):159424. [67] 郑虎, 高美娟, 杨化强. 基因编辑技术在猪遗传育种中的研究进展[J]. 畜牧与兽医, 2024, 56(1):129-139. ZHENG H, GAO MJ, YANG HQ. Progress in research on gene editing in pig breeding[J]. Animal Husbandry & Veterinary Medicine, 2024, 56(1):129-139. [68] GU H, ZHOU Y, YANG JZ, et al. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition[J]. The FASEB Journal, 2021, 35(2):e21308. [69] AKSOY MO, BILINSKA A, STACHOWIAK M, et al. Deciphering the role of the SREBF1 gene in the transcriptional regulation of porcine adipogenesis using CRISPR/Cas9 editing[J]. International Journal of Molecular Sciences, 2024, 25(23):12677. [70] LI MJ, TANG XC, YOU WN, et al. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine[J]. Molecular Therapy - Nucleic Acids, 2021, 26:49-62. [71] ZHU XX, WEI YY, ZHAN QM, et al. CRISPR/Cas9-mediated biallelic knockout of IRX3 reduces the production and survival of somatic cell-cloned Bama minipigs[J]. Animals, 2020, 10(3):501. [72] SHI X, TANG T, LIN QY, et al. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9[J]. Biology of Reproduction, 2020, 103(5):1054-1068. [73] JIAO YF, BEI C, WANG YX, et al. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function[J]. International Journal of Biological Macromolecules, 2024, 267:131417. [74] CHEN PR, UH K, MONARCH K, et al. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs[J]. Biology of Reproduction, 2023, 108(4):611-618. [75] JAVAID D, GANIE SY, HAJAM YA, et al. CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology[J]. Molecular Biology Reports, 2022, 49(12):12133-12150. [76] CHU C, YANG ZH, YANG JY, et al. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases[J]. BMC Biotechnology, 2019, 19(1):7. [77] GEURTS AM, COST GJ, FREYVERT Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939):433. [78] VISSCHER PM, GYNGELL C, YENGO L, et al. Heritable polygenic editing: the next frontier in genomic medicine?[J]. Nature, 2025, 637(8046):637-645. [79] PARKES M, CORTES A, VAN HEEL DA, et al. Genetic insights into common pathways and complex relationships among immune-mediated diseases[J]. Nature Reviews Genetics, 2013, 14(9):661-673. [80] SáNCHEZ CHM, BENNETT JB, WU SL, et al. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations[J]. BMC Biology, 2020, 18(1):50. [81] LEDFORD H. CRISPR gene editing in human embryos wreaks chromosomal mayhem[J]. Nature, 2020, 583(7814):17-18. [82] ALANIS-LOBATO G, ZOHREN J, MCCARTHY A, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(22):e2004832117. [83] BEARTH A, OTTEN CD, COHEN AS. Consumers' perceptions and acceptance of genome editing in agriculture: insights from the United States of America and Switzerland[J]. Food Research International, 2024, 178:113982. [84] PIERGENTILI R, DEL RIO A, SIGNORE F, et al. CRISPR-cas and its wide-ranging applications: from human genome editing to environmental implications, technical limitations, hazards and bioethical issues[J]. Cells, 2021, 10(5):969. [85] 刘佳. CRISPR/Cas9基因编辑技术的生物伦理和法律问题[J]. 分子植物育种, 2024, 22(10):3188-3194. LIU J. Bioethical and legal issues of CRISPR/Cas9 gene editing technology[J]. Molecular Plant Breeding, 2024, 22(10):3188-3194. [86] 王立铭. 当人类生命被设计“基因编辑婴儿”背后的伦理[J]. 科学大观园, 2022(8):14-21. WANG LM. When human life is engineered: the ethics behind “gene-edited babies” [J]. Grand Garden of Science, 2022(8):14-21. [87] LEI L, LIAO F, TAN L, et al. LAMP coupled CRISPR-Cas12a module for rapid, sensitive and visual detection of porcine circovirus 2[J]. Animals, 2021, 12(18):241. [88] BI DF, YAO J, WANG Y, et al. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos[J]. Reproduction, 2021, 162(2):149-160. [89] LI ZC, ZENG F, MENG FM, et al. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids[J]. Biology of Reproduction, 2014, 90(5):93. [90] REDEL BK, PRATHER RS. Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases[J]. Toxicologic Pathology, 2016, 44(3):428-433. [91] YUAN TL, WU LL, LI SY, et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes[J]. Cell Discovery, 2024, 10(1):20. [92] QI YN, ZHANG Y, TIAN SJ, et al. An optimized prime editing system for efficient modification of the pig genome[J]. Science China Life Sciences, 2023, 66(12):2851-2861. [93] DOENCH JG, FUSI N, SULLENDER M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nature Biotechnology, 2016, 34(2):184-191. [94] RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/cas technology in pig-to-human xenotransplantation research[J]. International Journal of Molecular Sciences, 2021, 22(6):3196. [95] SINGH AK, GOERLICH CE, ZHANG TS, et al. Genetically engineered pig heart transplantation in non-human Primates[J]. Communications Medicine, 2025, 5(1):6. [96] 李霄, 曹薇薇, 余良. 异种肝移植的探索之路: 从科学研究走向临床应用[J]. 器官移植, 2024, 15(5):758-763. LI X, CAO WW, YU L. Exploratory road of liver xenotransplantation: from scientific research to clinical application[J]. Organ Transplantation, 2024, 15(5):758-763. [97] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982):393-401. [98] MARIGLIANO M, BERTERA S, GRUPILLO M, et al. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview[J]. Current Diabetes Reports, 2011, 11(5):402-412. [99] DENG JC, YANG L, WANG ZR, et al. Advance of genetically modified pigs in xeno-transplantation[J]. Frontiers in Cell and Developmental Biology, 2022, 10:1033197. [100] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. The New England Journal of Medicine, 2022, 386(20):1889-1898. [101] WANG W, HE W, RUAN Y, et al. First pig-to-human heart transplantation[J]. The Innovation, 2022, 3(2):100223. [102] NEWBY GA, YEN JS, WOODARD KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice[J]. Nature, 2021, 595(7866):295-302. [103] DA SILVA SANCHEZ A, PAUNOVSKA K, CRISTIAN A, et al. Treating cystic fibrosis with mRNA and CRISPR[J]. Human Gene Therapy, 2020, 31(17/18):940-955. [104] FRANGOUL H, ALTSHULER D, DOMENICA CAPPELLINI M, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. The New England Journal of Medicine, 2021, 384(3):252-260. [105] CHEN S, SUN H, MIAO K, et al. CRISPR-Cas9: from genome editing to cancer research[J]. International Journal of Biological Sciences, 2016, 12(12):1427-1436. [106] ZHANG Y, NADERI YEGANEH P, ZHANG HW, et al. Tumor editing suppresses innate and adaptive antitumor immunity and is reversed by inhibiting DNA methylation[J]. Nature Immunology, 2024, 25(10):1858-1870. [107] LIU B, SABER A, HAISMA HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment[J]. Drug Discovery Today, 2019, 24(4):955-970. [108] ZHOU W, YANG J, ZHANG Y, et al. Current landscape of gene‐editing technology in biomedicine: applications, advantages, challenges, and perspectives[J]. MedComm, 2021, 3(3):e155. [109] FANG YL, CHEN XG, GODBEY WT. Gene editing in regenerative medicine[M]. Principles of Regenerative Medicine, 2019:741-759. [110] GONG QW, SHA G, HAN XY, et al. Knockout of phosphatidate phosphohydrolase genes confers broad-spectrum disease resistance in plants[J]. Plant Biotechnology Journal, 2025, 23(1):72-74. [111] MOCZEK AP, SEARS KE, STOLLEWERK A, et al. The significance and scope of evolutionary developmental biology: a vision for the 21st century[J]. Evolution & Development, 2015, 17(3):198-219. [112] WU ST, KYAW H, TONG ZJ, et al. A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants[J]. The Crop Journal, 2024, 12(2):569-582. [113] GAO HX, PEI XY, SONG XS, et al. Application and development of CRISPR technology in the secondary metabolic pathway of the active ingredients of phytopharmaceuticals[J]. Frontiers in Plant Science, 2025, 15:1477894. [114] MA J, LYU Y, LIU X, et al. Engineered probiotics[J]. Microbial Cell Factories, 2022, 21(1):7. [115] TAN X, LETENDRE JH, COLLINS JJ, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4):881-898. [116] SHANMUGAM S, NGO HH, WU YR. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review[J]. Renewable Energy, 2020, 149:1107-1119.
[1] 冯沈泂, 倪征钰, 马 昭, 孙尉峻, 张林林, 杜旭光. 基因编辑异种器官移植供体猪的研究进展[J]. 中国猪业, 2025, 20(2): 5-14.
[2] 王文娜, 齐世宏, 余大为, 黄永业. 基因编辑猪的遗传改良与生物医学应用:技术潜力与现实挑战[J]. 中国猪业, 2025, 20(2): 15-22.
[3] 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34.
[4] 骆庆龙,练胜举,王 婧,龙次民,刘 梅. 猪肾在生物医学中的应用[J]. 中国猪业, 2025, 20(2): 51-62.
[5] 高祥,王拓原,孙雅妮,崔清明,彭英林,陈晨. 地方猪育种研究进展[J]. 中国猪业, 2025, 20(2): 63-74.
[6] 徐桢,贺媛媛,刘凯,曹亚鸽,李莉,卫恒习,张守全. 烯丙孕素处理对初产母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 75-83.
[7] 李洪,戴琦,熊汉成,吴丽艳. 不同有效精子数的自动仿生输精技术对母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 84-92.
[8] 张汉宁,兰干球,梁晶. 饲料中添加地黄多糖对母猪繁殖性能和育肥猪生长性能的影响[J]. 中国猪业, 2025, 20(2): 93-100.
[9] 杨馨雨, 车炼强, 陈代文, 伍爱民. 铁营养与仔猪腹泻[J]. 中国猪业, 2025, 20(1): 3-11.
[10] 李玉莲, 范觉鑫, 谭 红, 李朝晖, 吴攀峰, 李茜茜, 王 洁, 刘冬明, 吴买生. 复合饲料添加剂对沙子岭猪肥育性能、胴体性能及肌肉品质的影响[J]. 中国猪业, 2025, 20(1): 26-34.
[11] 张 航, 杨宇泽, Jesse Oluwaseun Ayantoye, 董建华, 潘红梅, 赵学明. 猪精子冷冻保存研究进展[J]. 中国猪业, 2025, 20(1): 35-46.
[12] 雷国凤, 陈奎蓉, 和艺云, 梁 晶. 广西地方猪品种肌内脂肪含量及相关基因表达分析[J]. 中国猪业, 2025, 20(1): 47-54.
[13] 杜玉诗, 郭建凤, 王为全. 烟台黑猪和长烟杂交猪繁殖性能及育肥产肉性能比较[J]. 中国猪业, 2025, 20(1): 55-62.
[14] 林 艳, 夏嘉鑫, 周远成, 李 敏, 郑勤琴, 陈莉群, 岳丰雄. 猪肠病毒 G 型的分离鉴定及致病性研究[J]. 中国猪业, 2025, 20(1): 63-72.
[15] 陈 佶, 刘伟华, 魏建超. 猪舍非线性环境因素对猪生产性能影响的研究进展[J]. 中国猪业, 2025, 20(1): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!