中国猪业 ›› 2025, Vol. 20 ›› Issue (2): 51-62.doi: 10.16174/j.issn.1673-4645.2025.02.005
骆庆龙,练胜举,王 婧,龙次民,刘 梅
摘要: 猪肾因其与人类肾脏的相似性而广泛应用于生物医学研究领域,猪肾脏解剖结构和生理特征使其成为理想的疾病模型。在疾病机制探索中,猪肾被广泛用于构建急性与慢性肾衰竭、糖尿病型肾病、高血压型肾病及缺血再灌注损伤等病理模型,为揭示肾脏纤维化、炎症反应及代谢失衡等分子机制提供了关键平台。在评估新治疗方案,并推动药物开发,尤其在药物代谢和肾功能评估方面展现出独特优势。此外,猪肾在异种器官移植中也具有巨大潜力,基因编辑技术如CRISPR/Cas9的应用有助于减少排斥反应,从而为解决器官短缺问题提供了新的方向。然而,未来的研究仍需应对免疫排斥和伦理问题,以推动其在临床应用中的发展。总体而言,猪肾在生物医学中的潜力巨大,为相关疾病的治疗与研究开辟了新路径。
中图分类号: S828;S814.8
[1] NIU D, MA X, YUAN TY, et al. Porcine genome engineering for xenotransplantation[J]. Advanced Drug Delivery Reviews, 2021, 168:229-245. [2] LIANG JQ, LIU YH. Animal models of kidney disease: challenges and perspectives[J]. Kidney360, 2023, 4(10):1479-1493. [3] CHADE AR, WILLIAMS ML, ENGEL JE, et al. Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease[J]. American Journal of Physiology Renal Physiology, 2020, 319(1):F139-F148. [4] PABST R. The pig as a model for immunology research[J]. Cell and Tissue Research, 2020, 380(2):287-304. [5] CHADE AR, WILLIAMS ML, ENGEL J, et al. A translational model of chronic kidney disease in swine[J]. American Journal of Physiology Renal Physiology, 2018, 315(2):F364-F373. [6] 骆庆龙, 袁昭顺, 张致远, 等. 冠心病模式猪的研究进展[J]. 畜牧兽医学报, 2024, 55(12):5349-5367. LUO QL, YUAN ZS, ZHANG ZY, et al. Research progress of coronary heart disease model pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12):5349-5367. [7] 于佳庆, 方一晽, 方铭慧, 等. 猪肾脏异种移植的研究进展[J]. 吉林大学学报(医学版), 2021, 47(3):788-795. YU JQ, FANG YL, FANG MH, et al. Research progress in pig kidney xenotransplantation[J]. Journal of Jilin University (Medicine Edition), 2021, 47(3):788-795. [8] VASAMSETTI BMK, PARK SH, RALLABANDI HR, et al. Morphometric analysis of alpha-1, 3-galactosyltransferase knockout pig kidney and heart[J]. Laboratory Animals, 2020, 54(6):599-604. [9] LAUDER L, EWEN S, TZAFRIRI AR, et al. Renal artery anatomy assessed by quantitative analysis of selective renal angiography in 1,000 patients with hypertension[J]. EuroIntervention, 2018, 14(1):121-128. [10] SATO Y, SHARP ASP, MAHFOUD F, et al. Translational value of preclinical models for renal denervation: a histological comparison of human versus porcine renal nerve anatomy[J]. EuroIntervention, 2023, 18(13):1120-1128. [11] HOARE D, KINGSMORE D, HOLSGROVE M, et al. Realtime monitoring of Thrombus formation in vivo using a self-reporting vascular access graft[J]. Communications Medicine, 2024, 4(1):15. [12] OKABE T, KATOH M, KANO M, et al. Studies of the various chronic kidney failure rat models and hemodialysis mini-pig model for the evaluation of anti-hyperphosphatemia drugs[J]. Yakugaku Zasshi, 2019, 139(11):1435-1448. [13] XIANG Y, LONG JL, XING JS, et al. [BM-MSCs from Wuzhishan mini-pigs delay the progress of renal fibrosis induced by chronic kidney disease through ?autocrine hepatocyte growth factor in vitro][J]. Journal of Central South University Medical sciences, 2016, 41(12):1260-1269. [14] CHADE AR, SITZ R, KELTY TJ, et al. Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine[J]. Translational Research, 2024, 267:67-78. [15] CHADE AR, EIRIN A. Cardiac micro-RNA and transcriptomic profile of a novel swine model of chronic kidney disease and left ventricular diastolic dysfunction[J]. American Journal of Physiology Heart and Circulatory Physiology, 2022, 323(4):H659-H669. [16] EIRIN A, CHADE AR. Cardiac epigenetic changes in VEGF signaling genes associate with myocardial microvascular rarefaction in experimental chronic kidney disease[J]. American Journal of Physiology Heart and Circulatory Physiology, 2022, 324(1): H14-H25. [17] DAE MW, LIU KD, SOLOMON RJ, et al. Effect of low-frequency therapeutic ultrasound on induction of nitric oxide in CKD: potential to prevent acute kidney injury[J]. Kidney Diseases, 2020, 6(6):453-460. [18] KJAERGAARD U, BΦGH N, HANSEN ESS, et al. Assessment of focal renal ischemia-reperfusion injury in a porcine model using hyperpolarized [1-(13) C]pyruvate MRI[J]. Magnetic Resonance in Medicine, 2023, 90(2):655-66. [19] ERGIN B, VAN ROOIJ T, LIMA A, et al. Intra-renal microcirculatory alterations on non-traumatic hemorrhagic shock induced acute kidney injury in pigs[J]. Journal of Clinical Monitoring and Computing, 2023, 37(5):1193-1205. [20] NEMOURS S, CASTRO L, RIBATALLADA-SORIANO D, et al. Temporal and sex-dependent gene expression patterns in a renal ischemia–reperfusion injury and recovery pig model[J]. Scientific Reports, 2022, 12:6926. [21] REN Y, CUI SY, HONG Q, et al. Role of NOD-like receptors in a miniature pig model of diabetic renal injuries[J]. Mediators of Inflammation, 2022, 2022:5515305. [22] RODRíGUEZ RR, GONZáLEZ-BULNES A, GARCIA-CONTRERAS C, et al. The Iberian pig fed with high-fat diet: a model of renal disease in obesity and metabolic syndrome[J]. International Journal of Obesity, 2020, 44(2):457-465. [23] CHRISTOFFERSEN B?, KRISTENSEN CA, LINDGAARD R, et al. Functional and morphological renal changes in a G?ttingen Minipig model of obesity-related and diabetic nephropathy[J]. Scientific Reports, 2023, 13:6017. [24] LIU Y, LI HG, WANG SZ, et al. Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: focus on oxidative stress and fibrogenesis[J]. Biomedicine & Pharmacotherapy, 2020, 129:110321. [25] DE BHAILIS áM, KALRA PA. Hypertension and the kidneys[J]. British Journal of Hospital Medicine, 2022, 83(5):1-11. [26] GEORGIANOS PANAGIOTIS I, RAJIV A. Hypertension in chronic kidney disease - treatment standard 2023[J]. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 2023:424-431. [27] OHASHI N, ISOBE S, ISHIGAKI S, et al. Circadian rhythm of blood pressure and the renin–angiotensin system in the kidney[J]. Hypertension Research, 2017, 40(5):413-422. [28] HAN WZ, FANG WY, GAN Q, et al. Low-dose sustained-release deoxycorticosterone acetate-induced hypertension in Bama miniature pigs for renal sympathetic nerve denervation[J]. Journal of the American Society of Hypertension, 2017, 11(5):314-320. [29] YU SS, JIANG K, ZHU XY, et al. Endovascular reversal of renovascular hypertension blunts cardiac dysfunction and deformation in swine[J]. Journal of Hypertension, 2021, 39(3):556-562. [30] FARAHANI RA, YU S, FeERGUSON CM, et al. Renal revascularization attenuates myocardial mitochondrial damage and improves diastolic function in pigs with metabolic syndrome and renovascular hypertension[J]. Journal of Cardiovascular Translational Research, 2021, 15(1):15-26. [31] SUN D, EIRIN A, ZHU XY, et al. Experimental coronary artery stenosis accelerates kidney damage in renovascular hypertensive swine[J]. Kidney International, 2015, 87(4):719-727. [32] KINOSHITA Y, SHIRAKAWA K, SANO M, et al. Development of a novel porcine ischemia / reperfusion model inducing different ischemia times in bilateral kidneys-effects of hydrogen gas inhalation[J]. Translational Andrology and Urology, 2022, 11(4):430-438. [33] DARIUS T, VERGAUWEN M, SMITH TB, et al. Influence of different partial pressures of oxygen during continuous hypothermic machine perfusion in a pig kidney ischemia-reperfusion autotransplant model[J]. Transplantation, 2020, 104(4):731-743. [34] CASTELLANO G, FRANZIN R, STASI A, et al. Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK signaling[J]. Frontiers in Immunology, 2018, 9:1002. [35] DE VRIES JC, VAN GELDER MK, MONNINKHOF AS, et al. A uremic pig model for peritoneal dialysis[J]. Toxins, 2022, 14(9):635. [36] VAN GELDER MK, DE VRIES JC, SIMONIS F, et al. Evaluation of a system for sorbent-assisted peritoneal dialysis in a uremic pig model[J]. Physiological Reports, 2020, 8(23):e14593. [37] MA ST, ZHU XY, EIRIN A, et al. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-α[J]. The Journal of Urology, 2016, 195(4):1152-1159. [38] ORIEUX A, SAMSON C, PIERONI L, et al. Pulmonary hypertension without heart failure causes cardiorenal syndrome in a porcine model[J]. Scientific Reports, 2023, 13:9130. [39] FAROOQUI N, MOHAN A, ISUK B, et al. Effect of hypoxia preconditioning on the regenerative capacity of adipose tissue derived mesenchymal stem cells in a model of renal artery stenosis[J]. Stem Cells (Dayton, Ohio), 2022, 41(1):50-66. [40] OZOUX ML, BRIAND V, PELAT M, et al. Potential therapeutic value of urotensinⅡreceptor antagonist in chronic kidney disease and associated comorbidities[J]. The Journal of Pharmacology and Experimental Therapeutics, 2020, 374(1):24-37. [41] ENGEL JE, WILLIAMS E, WILLIAMS ML, et al. Targeted VEGF (vascular endothelial growth factor) therapy induces long-term renal recovery in chronic kidney disease via macrophage polarization[J]. Hypertension, 2019, 74(5):1113-1123. [42] YAMANAKA S. Generation of chimeric kidneys using progenitor cell replacement: oshima Award Address 2021[J]. Clinical and Experimental Nephrology, 2022, 26(6):491-500. [43] PELLEGRINO PR, ZUCKER IH, CHATZIZISIS YS, et al. Quantification of renal sympathetic vasomotion as a novel end point for renal denervation[J]. Hypertension, 2020, 76(4):1247-1255. [44] KAZEMINIA S, ZHU XY, TANG H, et al. Renal ischemia alters the transcriptomic and epigenetic profile of inflammatory genes in swine scattered tubular-like cells[J]. Clinical Science, 2023, 137(16):1265-1283. [45] LAUDER L, MOON LB, PIPEHAGEN CA, et al. A drug-induced hypotensive challenge to verify catheter-based radiofrequency renal denervation in an obese hypertensive swine model[J]. Clinical Research in Cardiology : Official Journal of the German Cardiac Society, 2020, 111(6):595-603. [46] HERING D, HUBBARD BS, WEBER MA, et al. Impact of renal pelvic denervation on systemic hemodynamics and neurohumoral changes in a porcine model[J]. American Journal of Nephrology, 2021, 52(5):429-434. [47] CAI XX, YANG YL, SHEN YC, et al. Noninvasive stereotactic radiotherapy for renal denervation in a swine model[J]. Journal of the American College of Cardiology, 2019, 74(13):1697-1709. [48] CAI XX, SHEN YC, YANG YL, et al. Renal denervation by noninvasive stereotactic radiotherapy induces persistent reduction of sympathetic activity in a hypertensive swine model[J]. Journal of the American Heart Association, 2021, 10(16):e020068. [49] SONG WH, BAIK J, YANG S, et al. Animal model evaluation of a novel renal denervation system for future laparoscopic treatment of resistant hypertension[J]. Investigative and Clinical Urology, 2020, 61(1):107-113. [50] RAO VS, MAULION C, ASHER JL, et al. Renal negative pressure treatment as a novel therapy for heart failure-induced renal dysfunction[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2021, 321(4):R588-R594. [51] MORGAN MSC, OZAYAR A, LUCAS E, et al. Comparative effects of irreversible electroporation, radiofrequency ablation, and partial nephrectomy on renal function preservation in a porcine solitary kidney model[J]. Urology, 2016, 94:281-287. [52] FANOUS MS, AFOLABI JM, MICHAEL OS, et al. Transdermal measurement of glomerular filtration rate in mechanically ventilated piglets[J]. Journal of Visualized Experiments: JoVE, 2022(187). doi: 10.3791/64413. [53] JIANG K, FERGUSON CM, GRIMM RC, et al. Reliable assessment of swine renal fibrosis using quantitative magnetization transfer imaging[J]. Investigative Radiology, 2021, 57(5):334-348. [54] GANDHI DB, Al SAEEDI M, KRIER JD, et al. Evaluation of renal fibrosis using magnetization transfer imaging at 1.5T and 3T in a porcine model of renal artery stenosis[J]. Journal of Clinical Medicine, 2023, 12(8). doi: 10.3390/JCM12082956. [55] ZHANG X, ZHU XY, FERGUSON CM, et al. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney[J]. Magma, 2018, 31(3):375-382. [56] RASMUSSEN CW, B?GH N, BECH SK, et al. Fibrosis imaging with multiparametric proton and sodium MRI in pig injury models[J]. NMR in Biomedicine, 2023, 36(2):e4838. [57] TALLOWIN S, ABEL B, MYSORE B, et al. Canagliflozin mitigates acute kidney injury secondary to resuscitative endovascular balloon occlusion of the aorta in a porcine model of hemorrhagic shock[J]. Annals of Surgery, 2024. doi: 10.1097/SLA.0000000000006501. [58] RIEGER AC, TOMPKINS BA, NATSUMEDA M, et al. Allogeneic cell combination therapy ameliorates chronic kidney disease-induced heart failure with preserved ejection fraction[J]. Stem Cells Translational Medicine, 2022, 11(1):59-72. [59] AHMED S, DE VRIES JC, LU J, et al. Animal models for studying protein-bound uremic toxin removal-a systematic review[J]. International Journal of Molecular Sciences, 2023, 24(17):713197. [60] GUEVARA T. Evaluating the effects of CDK inhibitors in ischemia-reperfusion injury models[J]. Methods in Molecular Biology, 2016, 1336:111-121. [61] XU M, WANG XC, BANAN B, et al. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death[J]. American Journal of Transplantation, 2018, 18(4):855-867. [62] HU X, OKABAYASHI T, CAMERON AM, et al. Chimeric allografts induced by short-term treatment with stem cell-mobilizing agents result in long-term kidney transplant survival without immunosuppression: a study in rats[J]. American Journal of Transplantation, 2016, 16(7):2055-2065. [63] CRUCES P, LILLO P, SALAS C, et al. Renal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion-induced acute kidney injury: a physiologic approach[J]. Critical Care Medicine, 2018, 46(2):216-222. [64] ZHANG X, KRIER JD, AMADOR CARRASCAL C, et al. Low-energy shockwave therapy improves ischemic kidney microcirculation[J]. Journal of the American Society of Nephrology, 2016, 27(12):3715-3724. [65] CHEN XJ, ZHANG X, JIANG K, et al. Adjunctive mesenchymal stem/stromal cells augment microvascular function in poststenotic kidneys treated with low-energy shockwave therapy[J]. Journal of Cellular Physiology, 2020, 235(12):9806-9818. [66] FARAHANI RA, AFARIDEH M, ZHU XY, et al. Percutaneous transluminal renal angioplasty attenuates poststenotic kidney mitochondrial damage in pigs with renal artery stenosis and metabolic syndrome[J]. Journal of Cellular Physiology, 2021, 236(5):4036-4049. [67] CHADE AR, TULLOS N, STEWART NJ, et al. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease[J]. Journal of the American Society of Nephrology, 2015, 26(5):1071-1080. [68] EIRIN A, HEDAYAT AF, FERGUSON CM, et al. Mitoprotection preserves the renal vasculature in porcine metabolic syndrome[J]. Experimental Physiology, 2018, 103(7):1020-1029. [69] EIRIN A, WOOLLARD JR, FERGUSON CM, et al. The metabolic syndrome induces early changes in the swine renal medullary mitochondria[J]. Translational Research, 2017, 184:45-56.e9. [70] REESE PP, POWE NR, LO B. Engineering equity into the promise of xenotransplantation[J]. American Journal of Kidney Diseases, 2024, 83(5):677-683. [71] COOPER DKC, RIELLA LV, KAWAI T, et al. The time has come: the case for initiating pilot clinical trials of pig kidney xenotransplantation[J]. Annals of Surgery, 2024, 281(2):204-209. [72] MATSUI K, SEKINE H, ISHIKAWA J, et al. Exploration of preservation methods for utilizing porcine fetal-organ-derived cells in regenerative medicine research[J]. Cells, 2024, 13(3):228. [73] SHAH JA, LANASPA MA, TANABE T, et al. Remaining physiological barriers in porcine kidney xenotransplantation: potential pathways behind proteinuria as well as factors related to growth discrepancies following pig-to-kidney xenotransplantation[J]. Journal of Immunology Research, 2018, 2018:6413012. [74] Nature Biotechnology. First gene-edited pig kidney transplant[EB/OL]. https://doi.org/10.1038/s41587-024-02223-1. [75] JUDD E, KUMAR V, PORRETT PM, et al. Physiologic homeostasis after pig-to-human kidney xenotransplantation[J]. Kidney International, 2024, 105(5):971-979. [76] HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2022, 23(3):353-365. [77] PAN WQ, ZHANG WM, ZHENG BH, et al. Cellular dynamics in pig-to-human kidney xenotransplantation[J]. Med(New York, N.Y.), 2024, 5(8):1016-1029.e4. [78] LUCANDER ACK, JUDD E, COOPER DKC. What is the clinical relevance of deviant serum calcium and phosphate levels after pig-to-primate kidney xenotransplantation?[J]. Xenotransplantation, 2022, 29(6):e12785. [79] BERTERA S. Commentary on “Indicators of impending pig kidney and heart xenograft failure: relevance to clinical organ xenotransplantation” (Int J Surg 2019; Aug 21. Pii:S1743-9191(19)30215-8. doi: 10.1016/j.ijsu. 2019.08.024. [Epubaheadofprint])[J]. International Journal of Surgery, 2019, 71:41-42. [80] CHEUNG MD, ASIIMWE R, ERMAN EN, et al. Spatiotemporal immune atlas of a clinical-grade gene-edited pig-to-human kidney xenotransplant[J]. Nature Communications, 2024, 15(1):3140. [81] JONES-CARR ME, FATIMA H, KUMAR V, et al. C5 inhibition with eculizumab prevents thrombotic microangiopathy in a case series of pig-to-human kidney xenotransplantation[J]. The Journal of Clinical Investigation, 2024, 134(5):e175996. [82] TAKAMURA T, SASAKI H, HIRAYAMA H, et al. Techniques of orthotopic renal transplantation. II. Size-matched porcine grafts in monkey recipients[J]. Acta Cirurgica Brasileira, 2021, 36(5):e360503. [83] FOOTE JB, JAGDALE A, YAMAMOTO T, et al. Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons[J]. Xenotransplantation, 2021, 28(6):e12715. [84] LOUPY A, GOUTAUDIER V, GIARRAPUTO A, et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study[J]. Lancet, 2023, 402(10408):1158-1169. [85] LEE DW, KIM JS, KIM IY, et al. Catheter-based renal sympathetic denervation induces acute renal inflammation through activation of caspase-1 and NLRP3 inflammasome[J]. Anatolian Journal of Cardiology, 2019, 21(3):134-141. [86] CHADE AR, ENGEL JE, HALL ME, et al. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis[J]. American Journal of Physiology Renal Physiology, 2021, 321(4):F411-F423. [87] ZHU B, LIU Y, QI D, et al. Renal interstitial fibrosis is reduced in high-fat diet-induced obese pigs following renal denervation from the intima and adventitia of the renal artery[J]. Kidney & Blood Pressure Research, 2021, 47(2):135-146. [88] SHAO Y, SHA ML, CHEN L, et al. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model[J]. American Journal of Physiology Renal Physiology, 2016, 311(5):F915-F925. [89] MA C, FAN Z, GAO Z, et al. Delivery of human erythropoietin gene with an adeno-associated virus vector through parotid glands to treat renal anaemia in a swine model[J]. Gene Therapy, 2017, 24(11):692-698. [90] JIANG YM, HONG ST, ZHU XY, et al. IL-10 partly mediates the ability of MSC-derived extracellular vesicles to attenuate myocardial damage in experimental metabolic renovascular hypertension[J]. Frontiers in Immunology, 2022, 13:940093. [91] SONG TR, EIRIN A, ZHU XY, et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory T cells to ameliorate chronic kidney injury[J]. Hypertension, 2020, 75(5):1223-1232. [92] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. American Journal of Transplantation, 2022, 22(4):1037-1053. [93] PADILLA LA, HURST D, LOPEZ R, et al. Attitudes to clinical pig kidney xenotransplantation among medical providers and patients[J]. Kidney360, 2020, 1(7):657-662. [94] ARABI TZ, SABBAH BN, LERMAN A, et al. Xenotransplantation: current challenges and emerging solutions[J]. Cell Transplantation, 2023, 32:09636897221148771. [95] REESE PP, GELB BE, PARENT B. Unique problems for the design of the first trials of transplanting porcine kidneys into humans[J]. Kidney International, 2022, 103(2):239-247. [96] EISENSON DL, IWASE H, CHEN WL, et al. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation[J]. Frontiers in Immunology, 2024, 15:1351717. [97] VERMA A, SOTO E, ILLANES O, et al. Detection and genotyping of Leptospira spp. from the kidneys of a seemingly healthy pig slaughtered for human consumption[J]. Journal of Infection in Developing Countries, 2015, 9(5):530-532. |
[1] | 冯沈泂, 倪征钰, 马 昭, 孙尉峻, 张林林, 杜旭光. 基因编辑异种器官移植供体猪的研究进展[J]. 中国猪业, 2025, 20(2): 5-14. |
[2] | 王文娜, 齐世宏, 余大为, 黄永业. 基因编辑猪的遗传改良与生物医学应用:技术潜力与现实挑战[J]. 中国猪业, 2025, 20(2): 15-22. |
[3] | 李云蕾, 叶凯文, 熊明福, 李 健, 刘亚星, 李超程, 孔思远, 张永生. 基因编辑技术在猪分子育种中的研究进展与前景展望[J]. 中国猪业, 2025, 20(2): 35-50. |
[4] | 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34. |
[5] | 高妍,郑毅,官员. 猪胚胎冷冻技术的研究历程与未来展望[J]. 中国猪业, 2020, 15(2): 40-44,50. |
|