中国猪业 ›› 2025, Vol. 20 ›› Issue (2): 51-62.doi: 10.16174/j.issn.1673-4645.2025.02.005

• 专题报道 • 上一篇    下一篇

猪肾在生物医学中的应用

骆庆龙,练胜举,王 婧,龙次民,刘 梅   

  1. 湖南农业大学动物科学技术学院;中国科学院亚热带农业生态研究所
  • 出版日期:2025-04-25 发布日期:2025-04-25

  • Online:2025-04-25 Published:2025-04-25

摘要: 猪肾因其与人类肾脏的相似性而广泛应用于生物医学研究领域,猪肾脏解剖结构和生理特征使其成为理想的疾病模型。在疾病机制探索中,猪肾被广泛用于构建急性与慢性肾衰竭、糖尿病型肾病、高血压型肾病及缺血再灌注损伤等病理模型,为揭示肾脏纤维化、炎症反应及代谢失衡等分子机制提供了关键平台。在评估新治疗方案,并推动药物开发,尤其在药物代谢和肾功能评估方面展现出独特优势。此外,猪肾在异种器官移植中也具有巨大潜力,基因编辑技术如CRISPR/Cas9的应用有助于减少排斥反应,从而为解决器官短缺问题提供了新的方向。然而,未来的研究仍需应对免疫排斥和伦理问题,以推动其在临床应用中的发展。总体而言,猪肾在生物医学中的潜力巨大,为相关疾病的治疗与研究开辟了新路径。

关键词: 猪;肾脏;生物医学;疾病模型;基因编辑;异种移植;免疫排斥

Abstract: Porcine kidney was widely used in biomedical research because of its similarity to human kidney, and its anatomical structure and physiological characteristics made it an ideal disease model. In the exploration of disease mechanisms, porcine kidney had been widely used to construct pathological models of acute and chronic renal failure, diabetic nephropathy, hypertensive nephropathy, and ischemia-reperfusion injury, provided a key platform for revealing the molecular mechanisms of renal fibrosis, inflammatory response, and metabolic imbalance. In addition, it demonstrated unique advantages in evaluating new therapeutic options and promoting drug development, especially in drug metabolism and renal function assessment. Meanwhile, porcine kidneys also had great potential in xenotransplantation, and the application of gene editing techniques such as CRISPR/Cas9 could help to minimize rejection, thus provided a new direction to solve the organ shortage problem. However, future research still needed to address immune rejection and ethical issues to advance its development in clinical applications. Overall, porcine kidney had great potential in biomedicine and opens new pathways for treatment and research of related diseases.

Key words: pigs; kidney; biomedical science; disease model; gene editing; xenotransplantation; immune rejection

中图分类号:  S828;S814.8

[1] NIU D, MA X, YUAN TY, et al. Porcine genome engineering for xenotransplantation[J]. Advanced Drug Delivery Reviews, 2021, 168:229-245. [2] LIANG JQ, LIU YH. Animal models of kidney disease: challenges and perspectives[J]. Kidney360, 2023, 4(10):1479-1493. [3] CHADE AR, WILLIAMS ML, ENGEL JE, et al. Molecular targeting of renal inflammation using drug delivery technology to inhibit NF-κB improves renal recovery in chronic kidney disease[J]. American Journal of Physiology Renal Physiology, 2020, 319(1):F139-F148. [4] PABST R. The pig as a model for immunology research[J]. Cell and Tissue Research, 2020, 380(2):287-304. [5] CHADE AR, WILLIAMS ML, ENGEL J, et al. A translational model of chronic kidney disease in swine[J]. American Journal of Physiology Renal Physiology, 2018, 315(2):F364-F373. [6] 骆庆龙, 袁昭顺, 张致远, 等. 冠心病模式猪的研究进展[J]. 畜牧兽医学报, 2024, 55(12):5349-5367. LUO QL, YUAN ZS, ZHANG ZY, et al. Research progress of coronary heart disease model pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12):5349-5367. [7] 于佳庆, 方一晽, 方铭慧, 等. 猪肾脏异种移植的研究进展[J]. 吉林大学学报(医学版), 2021, 47(3):788-795. YU JQ, FANG YL, FANG MH, et al. Research progress in pig kidney xenotransplantation[J]. Journal of Jilin University (Medicine Edition), 2021, 47(3):788-795. [8] VASAMSETTI BMK, PARK SH, RALLABANDI HR, et al. Morphometric analysis of alpha-1, 3-galactosyltransferase knockout pig kidney and heart[J]. Laboratory Animals, 2020, 54(6):599-604. [9] LAUDER L, EWEN S, TZAFRIRI AR, et al. Renal artery anatomy assessed by quantitative analysis of selective renal angiography in 1,000 patients with hypertension[J]. EuroIntervention, 2018, 14(1):121-128. [10] SATO Y, SHARP ASP, MAHFOUD F, et al. Translational value of preclinical models for renal denervation: a histological comparison of human versus porcine renal nerve anatomy[J]. EuroIntervention, 2023, 18(13):1120-1128. [11] HOARE D, KINGSMORE D, HOLSGROVE M, et al. Realtime monitoring of Thrombus formation in vivo using a self-reporting vascular access graft[J]. Communications Medicine, 2024, 4(1):15. [12] OKABE T, KATOH M, KANO M, et al. Studies of the various chronic kidney failure rat models and hemodialysis mini-pig model for the evaluation of anti-hyperphosphatemia drugs[J]. Yakugaku Zasshi, 2019, 139(11):1435-1448. [13] XIANG Y, LONG JL, XING JS, et al. [BM-MSCs from Wuzhishan mini-pigs delay the progress of renal fibrosis induced by chronic kidney disease through ?autocrine hepatocyte growth factor in vitro][J]. Journal of Central South University Medical sciences, 2016, 41(12):1260-1269. [14] CHADE AR, SITZ R, KELTY TJ, et al. Chronic kidney disease and left ventricular diastolic dysfunction (CKD-LVDD) alter cardiac expression of mitochondria-related genes in swine[J]. Translational Research, 2024, 267:67-78. [15] CHADE AR, EIRIN A. Cardiac micro-RNA and transcriptomic profile of a novel swine model of chronic kidney disease and left ventricular diastolic dysfunction[J]. American Journal of Physiology Heart and Circulatory Physiology, 2022, 323(4):H659-H669. [16] EIRIN A, CHADE AR. Cardiac epigenetic changes in VEGF signaling genes associate with myocardial microvascular rarefaction in experimental chronic kidney disease[J]. American Journal of Physiology Heart and Circulatory Physiology, 2022, 324(1): H14-H25. [17] DAE MW, LIU KD, SOLOMON RJ, et al. Effect of low-frequency therapeutic ultrasound on induction of nitric oxide in CKD: potential to prevent acute kidney injury[J]. Kidney Diseases, 2020, 6(6):453-460. [18] KJAERGAARD U, BΦGH N, HANSEN ESS, et al. Assessment of focal renal ischemia-reperfusion injury in a porcine model using hyperpolarized [1-(13) C]pyruvate MRI[J]. Magnetic Resonance in Medicine, 2023, 90(2):655-66. [19] ERGIN B, VAN ROOIJ T, LIMA A, et al. Intra-renal microcirculatory alterations on non-traumatic hemorrhagic shock induced acute kidney injury in pigs[J]. Journal of Clinical Monitoring and Computing, 2023, 37(5):1193-1205. [20] NEMOURS S, CASTRO L, RIBATALLADA-SORIANO D, et al. Temporal and sex-dependent gene expression patterns in a renal ischemia–reperfusion injury and recovery pig model[J]. Scientific Reports, 2022, 12:6926. [21] REN Y, CUI SY, HONG Q, et al. Role of NOD-like receptors in a miniature pig model of diabetic renal injuries[J]. Mediators of Inflammation, 2022, 2022:5515305. [22] RODRíGUEZ RR, GONZáLEZ-BULNES A, GARCIA-CONTRERAS C, et al. The Iberian pig fed with high-fat diet: a model of renal disease in obesity and metabolic syndrome[J]. International Journal of Obesity, 2020, 44(2):457-465. [23] CHRISTOFFERSEN B?, KRISTENSEN CA, LINDGAARD R, et al. Functional and morphological renal changes in a G?ttingen Minipig model of obesity-related and diabetic nephropathy[J]. Scientific Reports, 2023, 13:6017. [24] LIU Y, LI HG, WANG SZ, et al. Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: focus on oxidative stress and fibrogenesis[J]. Biomedicine & Pharmacotherapy, 2020, 129:110321. [25] DE BHAILIS áM, KALRA PA. Hypertension and the kidneys[J]. British Journal of Hospital Medicine, 2022, 83(5):1-11. [26] GEORGIANOS PANAGIOTIS I, RAJIV A. Hypertension in chronic kidney disease - treatment standard 2023[J]. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 2023:424-431. [27] OHASHI N, ISOBE S, ISHIGAKI S, et al. Circadian rhythm of blood pressure and the renin–angiotensin system in the kidney[J]. Hypertension Research, 2017, 40(5):413-422. [28] HAN WZ, FANG WY, GAN Q, et al. Low-dose sustained-release deoxycorticosterone acetate-induced hypertension in Bama miniature pigs for renal sympathetic nerve denervation[J]. Journal of the American Society of Hypertension, 2017, 11(5):314-320. [29] YU SS, JIANG K, ZHU XY, et al. Endovascular reversal of renovascular hypertension blunts cardiac dysfunction and deformation in swine[J]. Journal of Hypertension, 2021, 39(3):556-562. [30] FARAHANI RA, YU S, FeERGUSON CM, et al. Renal revascularization attenuates myocardial mitochondrial damage and improves diastolic function in pigs with metabolic syndrome and renovascular hypertension[J]. Journal of Cardiovascular Translational Research, 2021, 15(1):15-26. [31] SUN D, EIRIN A, ZHU XY, et al. Experimental coronary artery stenosis accelerates kidney damage in renovascular hypertensive swine[J]. Kidney International, 2015, 87(4):719-727. [32] KINOSHITA Y, SHIRAKAWA K, SANO M, et al. Development of a novel porcine ischemia / reperfusion model inducing different ischemia times in bilateral kidneys-effects of hydrogen gas inhalation[J]. Translational Andrology and Urology, 2022, 11(4):430-438. [33] DARIUS T, VERGAUWEN M, SMITH TB, et al. Influence of different partial pressures of oxygen during continuous hypothermic machine perfusion in a pig kidney ischemia-reperfusion autotransplant model[J]. Transplantation, 2020, 104(4):731-743. [34] CASTELLANO G, FRANZIN R, STASI A, et al. Complement activation during ischemia/reperfusion injury induces pericyte-to-myofibroblast transdifferentiation regulating peritubular capillary lumen reduction through pERK signaling[J]. Frontiers in Immunology, 2018, 9:1002. [35] DE VRIES JC, VAN GELDER MK, MONNINKHOF AS, et al. A uremic pig model for peritoneal dialysis[J]. Toxins, 2022, 14(9):635. [36] VAN GELDER MK, DE VRIES JC, SIMONIS F, et al. Evaluation of a system for sorbent-assisted peritoneal dialysis in a uremic pig model[J]. Physiological Reports, 2020, 8(23):e14593. [37] MA ST, ZHU XY, EIRIN A, et al. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-α[J]. The Journal of Urology, 2016, 195(4):1152-1159. [38] ORIEUX A, SAMSON C, PIERONI L, et al. Pulmonary hypertension without heart failure causes cardiorenal syndrome in a porcine model[J]. Scientific Reports, 2023, 13:9130. [39] FAROOQUI N, MOHAN A, ISUK B, et al. Effect of hypoxia preconditioning on the regenerative capacity of adipose tissue derived mesenchymal stem cells in a model of renal artery stenosis[J]. Stem Cells (Dayton, Ohio), 2022, 41(1):50-66. [40] OZOUX ML, BRIAND V, PELAT M, et al. Potential therapeutic value of urotensinⅡreceptor antagonist in chronic kidney disease and associated comorbidities[J]. The Journal of Pharmacology and Experimental Therapeutics, 2020, 374(1):24-37. [41] ENGEL JE, WILLIAMS E, WILLIAMS ML, et al. Targeted VEGF (vascular endothelial growth factor) therapy induces long-term renal recovery in chronic kidney disease via macrophage polarization[J]. Hypertension, 2019, 74(5):1113-1123. [42] YAMANAKA S. Generation of chimeric kidneys using progenitor cell replacement: oshima Award Address 2021[J]. Clinical and Experimental Nephrology, 2022, 26(6):491-500. [43] PELLEGRINO PR, ZUCKER IH, CHATZIZISIS YS, et al. Quantification of renal sympathetic vasomotion as a novel end point for renal denervation[J]. Hypertension, 2020, 76(4):1247-1255. [44] KAZEMINIA S, ZHU XY, TANG H, et al. Renal ischemia alters the transcriptomic and epigenetic profile of inflammatory genes in swine scattered tubular-like cells[J]. Clinical Science, 2023, 137(16):1265-1283. [45] LAUDER L, MOON LB, PIPEHAGEN CA, et al. A drug-induced hypotensive challenge to verify catheter-based radiofrequency renal denervation in an obese hypertensive swine model[J]. Clinical Research in Cardiology : Official Journal of the German Cardiac Society, 2020, 111(6):595-603. [46] HERING D, HUBBARD BS, WEBER MA, et al. Impact of renal pelvic denervation on systemic hemodynamics and neurohumoral changes in a porcine model[J]. American Journal of Nephrology, 2021, 52(5):429-434. [47] CAI XX, YANG YL, SHEN YC, et al. Noninvasive stereotactic radiotherapy for renal denervation in a swine model[J]. Journal of the American College of Cardiology, 2019, 74(13):1697-1709. [48] CAI XX, SHEN YC, YANG YL, et al. Renal denervation by noninvasive stereotactic radiotherapy induces persistent reduction of sympathetic activity in a hypertensive swine model[J]. Journal of the American Heart Association, 2021, 10(16):e020068. [49] SONG WH, BAIK J, YANG S, et al. Animal model evaluation of a novel renal denervation system for future laparoscopic treatment of resistant hypertension[J]. Investigative and Clinical Urology, 2020, 61(1):107-113. [50] RAO VS, MAULION C, ASHER JL, et al. Renal negative pressure treatment as a novel therapy for heart failure-induced renal dysfunction[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2021, 321(4):R588-R594. [51] MORGAN MSC, OZAYAR A, LUCAS E, et al. Comparative effects of irreversible electroporation, radiofrequency ablation, and partial nephrectomy on renal function preservation in a porcine solitary kidney model[J]. Urology, 2016, 94:281-287. [52] FANOUS MS, AFOLABI JM, MICHAEL OS, et al. Transdermal measurement of glomerular filtration rate in mechanically ventilated piglets[J]. Journal of Visualized Experiments: JoVE, 2022(187). doi: 10.3791/64413. [53] JIANG K, FERGUSON CM, GRIMM RC, et al. Reliable assessment of swine renal fibrosis using quantitative magnetization transfer imaging[J]. Investigative Radiology, 2021, 57(5):334-348. [54] GANDHI DB, Al SAEEDI M, KRIER JD, et al. Evaluation of renal fibrosis using magnetization transfer imaging at 1.5T and 3T in a porcine model of renal artery stenosis[J]. Journal of Clinical Medicine, 2023, 12(8). doi: 10.3390/JCM12082956. [55] ZHANG X, ZHU XY, FERGUSON CM, et al. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney[J]. Magma, 2018, 31(3):375-382. [56] RASMUSSEN CW, B?GH N, BECH SK, et al. Fibrosis imaging with multiparametric proton and sodium MRI in pig injury models[J]. NMR in Biomedicine, 2023, 36(2):e4838. [57] TALLOWIN S, ABEL B, MYSORE B, et al. Canagliflozin mitigates acute kidney injury secondary to resuscitative endovascular balloon occlusion of the aorta in a porcine model of hemorrhagic shock[J]. Annals of Surgery, 2024. doi: 10.1097/SLA.0000000000006501. [58] RIEGER AC, TOMPKINS BA, NATSUMEDA M, et al. Allogeneic cell combination therapy ameliorates chronic kidney disease-induced heart failure with preserved ejection fraction[J]. Stem Cells Translational Medicine, 2022, 11(1):59-72. [59] AHMED S, DE VRIES JC, LU J, et al. Animal models for studying protein-bound uremic toxin removal-a systematic review[J]. International Journal of Molecular Sciences, 2023, 24(17):713197. [60] GUEVARA T. Evaluating the effects of CDK inhibitors in ischemia-reperfusion injury models[J]. Methods in Molecular Biology, 2016, 1336:111-121. [61] XU M, WANG XC, BANAN B, et al. Anti-CD47 monoclonal antibody therapy reduces ischemia-reperfusion injury of renal allografts in a porcine model of donation after cardiac death[J]. American Journal of Transplantation, 2018, 18(4):855-867. [62] HU X, OKABAYASHI T, CAMERON AM, et al. Chimeric allografts induced by short-term treatment with stem cell-mobilizing agents result in long-term kidney transplant survival without immunosuppression: a study in rats[J]. American Journal of Transplantation, 2016, 16(7):2055-2065. [63] CRUCES P, LILLO P, SALAS C, et al. Renal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion-induced acute kidney injury: a physiologic approach[J]. Critical Care Medicine, 2018, 46(2):216-222. [64] ZHANG X, KRIER JD, AMADOR CARRASCAL C, et al. Low-energy shockwave therapy improves ischemic kidney microcirculation[J]. Journal of the American Society of Nephrology, 2016, 27(12):3715-3724. [65] CHEN XJ, ZHANG X, JIANG K, et al. Adjunctive mesenchymal stem/stromal cells augment microvascular function in poststenotic kidneys treated with low-energy shockwave therapy[J]. Journal of Cellular Physiology, 2020, 235(12):9806-9818. [66] FARAHANI RA, AFARIDEH M, ZHU XY, et al. Percutaneous transluminal renal angioplasty attenuates poststenotic kidney mitochondrial damage in pigs with renal artery stenosis and metabolic syndrome[J]. Journal of Cellular Physiology, 2021, 236(5):4036-4049. [67] CHADE AR, TULLOS N, STEWART NJ, et al. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease[J]. Journal of the American Society of Nephrology, 2015, 26(5):1071-1080. [68] EIRIN A, HEDAYAT AF, FERGUSON CM, et al. Mitoprotection preserves the renal vasculature in porcine metabolic syndrome[J]. Experimental Physiology, 2018, 103(7):1020-1029. [69] EIRIN A, WOOLLARD JR, FERGUSON CM, et al. The metabolic syndrome induces early changes in the swine renal medullary mitochondria[J]. Translational Research, 2017, 184:45-56.e9. [70] REESE PP, POWE NR, LO B. Engineering equity into the promise of xenotransplantation[J]. American Journal of Kidney Diseases, 2024, 83(5):677-683. [71] COOPER DKC, RIELLA LV, KAWAI T, et al. The time has come: the case for initiating pilot clinical trials of pig kidney xenotransplantation[J]. Annals of Surgery, 2024, 281(2):204-209. [72] MATSUI K, SEKINE H, ISHIKAWA J, et al. Exploration of preservation methods for utilizing porcine fetal-organ-derived cells in regenerative medicine research[J]. Cells, 2024, 13(3):228. [73] SHAH JA, LANASPA MA, TANABE T, et al. Remaining physiological barriers in porcine kidney xenotransplantation: potential pathways behind proteinuria as well as factors related to growth discrepancies following pig-to-kidney xenotransplantation[J]. Journal of Immunology Research, 2018, 2018:6413012. [74] Nature Biotechnology. First gene-edited pig kidney transplant[EB/OL]. https://doi.org/10.1038/s41587-024-02223-1. [75] JUDD E, KUMAR V, PORRETT PM, et al. Physiologic homeostasis after pig-to-human kidney xenotransplantation[J]. Kidney International, 2024, 105(5):971-979. [76] HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2022, 23(3):353-365. [77] PAN WQ, ZHANG WM, ZHENG BH, et al. Cellular dynamics in pig-to-human kidney xenotransplantation[J]. Med(New York, N.Y.), 2024, 5(8):1016-1029.e4. [78] LUCANDER ACK, JUDD E, COOPER DKC. What is the clinical relevance of deviant serum calcium and phosphate levels after pig-to-primate kidney xenotransplantation?[J]. Xenotransplantation, 2022, 29(6):e12785. [79] BERTERA S. Commentary on “Indicators of impending pig kidney and heart xenograft failure: relevance to clinical organ xenotransplantation” (Int J Surg 2019; Aug 21. Pii:S1743-9191(19)30215-8. doi: 10.1016/j.ijsu. 2019.08.024. [Epubaheadofprint])[J]. International Journal of Surgery, 2019, 71:41-42. [80] CHEUNG MD, ASIIMWE R, ERMAN EN, et al. Spatiotemporal immune atlas of a clinical-grade gene-edited pig-to-human kidney xenotransplant[J]. Nature Communications, 2024, 15(1):3140. [81] JONES-CARR ME, FATIMA H, KUMAR V, et al. C5 inhibition with eculizumab prevents thrombotic microangiopathy in a case series of pig-to-human kidney xenotransplantation[J]. The Journal of Clinical Investigation, 2024, 134(5):e175996. [82] TAKAMURA T, SASAKI H, HIRAYAMA H, et al. Techniques of orthotopic renal transplantation. II. Size-matched porcine grafts in monkey recipients[J]. Acta Cirurgica Brasileira, 2021, 36(5):e360503. [83] FOOTE JB, JAGDALE A, YAMAMOTO T, et al. Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons[J]. Xenotransplantation, 2021, 28(6):e12715. [84] LOUPY A, GOUTAUDIER V, GIARRAPUTO A, et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study[J]. Lancet, 2023, 402(10408):1158-1169. [85] LEE DW, KIM JS, KIM IY, et al. Catheter-based renal sympathetic denervation induces acute renal inflammation through activation of caspase-1 and NLRP3 inflammasome[J]. Anatolian Journal of Cardiology, 2019, 21(3):134-141. [86] CHADE AR, ENGEL JE, HALL ME, et al. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis[J]. American Journal of Physiology Renal Physiology, 2021, 321(4):F411-F423. [87] ZHU B, LIU Y, QI D, et al. Renal interstitial fibrosis is reduced in high-fat diet-induced obese pigs following renal denervation from the intima and adventitia of the renal artery[J]. Kidney & Blood Pressure Research, 2021, 47(2):135-146. [88] SHAO Y, SHA ML, CHEN L, et al. HMGB1/TLR4 signaling induces an inflammatory response following high-pressure renal pelvic perfusion in a porcine model[J]. American Journal of Physiology Renal Physiology, 2016, 311(5):F915-F925. [89] MA C, FAN Z, GAO Z, et al. Delivery of human erythropoietin gene with an adeno-associated virus vector through parotid glands to treat renal anaemia in a swine model[J]. Gene Therapy, 2017, 24(11):692-698. [90] JIANG YM, HONG ST, ZHU XY, et al. IL-10 partly mediates the ability of MSC-derived extracellular vesicles to attenuate myocardial damage in experimental metabolic renovascular hypertension[J]. Frontiers in Immunology, 2022, 13:940093. [91] SONG TR, EIRIN A, ZHU XY, et al. Mesenchymal stem cell-derived extracellular vesicles induce regulatory T cells to ameliorate chronic kidney injury[J]. Hypertension, 2020, 75(5):1223-1232. [92] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. American Journal of Transplantation, 2022, 22(4):1037-1053. [93] PADILLA LA, HURST D, LOPEZ R, et al. Attitudes to clinical pig kidney xenotransplantation among medical providers and patients[J]. Kidney360, 2020, 1(7):657-662. [94] ARABI TZ, SABBAH BN, LERMAN A, et al. Xenotransplantation: current challenges and emerging solutions[J]. Cell Transplantation, 2023, 32:09636897221148771. [95] REESE PP, GELB BE, PARENT B. Unique problems for the design of the first trials of transplanting porcine kidneys into humans[J]. Kidney International, 2022, 103(2):239-247. [96] EISENSON DL, IWASE H, CHEN WL, et al. Combined islet and kidney xenotransplantation for diabetic nephropathy: an update in ongoing research for a clinically relevant application of porcine islet transplantation[J]. Frontiers in Immunology, 2024, 15:1351717. [97] VERMA A, SOTO E, ILLANES O, et al. Detection and genotyping of Leptospira spp. from the kidneys of a seemingly healthy pig slaughtered for human consumption[J]. Journal of Infection in Developing Countries, 2015, 9(5):530-532.
[1] 冯沈泂, 倪征钰, 马 昭, 孙尉峻, 张林林, 杜旭光. 基因编辑异种器官移植供体猪的研究进展[J]. 中国猪业, 2025, 20(2): 5-14.
[2] 王文娜, 齐世宏, 余大为, 黄永业. 基因编辑猪的遗传改良与生物医学应用:技术潜力与现实挑战[J]. 中国猪业, 2025, 20(2): 15-22.
[3] 李云蕾, 叶凯文, 熊明福, 李 健, 刘亚星, 李超程, 孔思远, 张永生. 基因编辑技术在猪分子育种中的研究进展与前景展望[J]. 中国猪业, 2025, 20(2): 35-50.
[4] 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34.
[5] 高妍,郑毅,官员. 猪胚胎冷冻技术的研究历程与未来展望[J]. 中国猪业, 2020, 15(2): 40-44,50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!