中国猪业 ›› 2025, Vol. 20 ›› Issue (2): 15-22.doi: 10.16174/j.issn.1673-4645.2025.02.002
王文娜,齐世宏,余大为,黄永业
摘要: 基因编辑技术在猪的遗传改良与生物医学研究中展现出巨大潜力。基因编辑猪具有良好的生产性状与抗病性能,可提升养殖收入。由于猪在解剖结构、代谢、生理生化等特征方面比啮齿类动物更接近人类,是理想的疾病模型和异种器官供体。然而,基因编辑猪也面临诸多挑战,如基因编辑效率与准确性有待提高,脱靶效应可能引起无关基因改变。此外,不同地区的监管政策差异也给基因编辑猪的产业化推广带来阻碍。深入了解基因编辑猪的现状与挑战,有助于推动其在科学研究与实际应用中的合理发展。
中图分类号: S828;S814.8
[1] ZENG YT, LI JN, LI GL, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Molecular Therapy, 2018, 26(11):2631-2637. [2] YANG DS, YANG HQ, LI W, et al. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Research, 2011, 21(6):979-982. [3] JOUNG JK, SANDER JD. TALENs: a widely applicable technology for targeted genome editing[J]. Nature Reviews Molecular Cell Biology, 2013, 14(1):49-55. [4] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science (New York, N Y), 2012, 337(6096):816-821. [5] KLEINSTIVER BP, PATTANAYAK V, PREW MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587):490-495. [6] GUO MH, REN K, ZHU YW, et al. Structural insights into a high fidelity variant of SpCas9[J]. Cell Research, 2019, 29(3):183-192. [7] KIM YB, KOMOR AC, LEVY JM, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nature Biotechnology, 2017, 35(4):371-376. [8] ZHANG XH, ZHU BY, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7):856-860. [9] QI YN, ZHANG Y, TIAN SJ, et al. An optimized prime editing system for efficient modification of the pig genome[J]. Science China Life Sciences, 2023, 66(12):2851-2861. [10] XIONG YC, SU YY, HE RG, et al. EXPERT expands prime editing efficiency and range of large fragment edits[J]. Nature Communications, 2025, 16(1):1592. [11] 李昂, 李卫华, 滕翔雁, 等. 我国居民肉类消费情况调查[J]. 中国动物检疫, 2020, 37(4): 35-38. LI A, LI WH, TENG XY, et al. Investigation on meat consumption in China[J]. China Animal Health Inspection, 2020, 37(4):35-38. [12] 张雯韬, 马思奇, 向鸿坤, 等. 地方猪品种改良及营养调控研究进展[J]. 中国猪业, 2024, 19(2): 3-14. ZHANG WT, MA SQ, XIANG HK, et al. Research progress on variety improvement and nutrition regulation of local pig breeds[J]. China Swine Industry, 2024, 19(2):3-14. [13] 王能武. 浅谈地方猪品种育成与发展[J]. 中国畜禽种业, 2020, 16(12):83-84. WANG NW. Discussion on breeding and development of local pig breeds[J]. The Chinese Livestock and Poultry Breeding, 2020, 16(12):83-84. [14] 覃世奇. 野猪在家猪品种改良中的作用初探[J]. 养殖与饲料, 2020, 19(12):81-82. QIN SQ. Preliminary study on the role of wild boar in improving domestic pig breeds[J]. Animals Breeding and Feed, 2020, 19(12):81-82. [15] REN JL, HAI T, CHEN YC, et al. Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12iMax[J]. Science China Life Sciences, 2024, 67(3):555-564. [16] LIU XF, LIU HB, WANG M, et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J]. Transgenic Research, 2019, 28(1):141-150. [17] XIE ZC, JIAO HP, XIAO HN, et al. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Research, 2020, 174:104696. [18] LUNNEY JK, VAN GOOR A, WALKER KE, et al. Importance of the pig as a human biomedical model[J]. Science Translational Medicine, 2021, 13(621):eabd5758. [19] SANATKAR SA, KINOSHITA K, MAENAKA A, et al. The evolution of immunosuppressive therapy in pig-to-nonhuman primate organ transplantation[J]. Transplant International, 2024, 37:13942. [20] MOHIUDDIN MM, GOERLICH CE, SINGH AK, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months[J]. Xenotransplantation, 2022, 29(3):e12744. [21] MOHIUDDIN MM, SINGH AK, SCOBIE L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report[J]. Lancet (London, England), 2023, 402(10399):397-410. [22] MALLAPATY S. First pig liver transplanted into a person lasts for 10 days[J]. Nature, 2024, 627(8005):710-711. [23] MALLAPATY S, KOZLOV M. First pig kidney transplant in a person: what it means for the future[J]. Nature, 2024, 628(8006):13-14. [24] DUO TQ, LIU XH, MO DL, et al. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs[J]. Journal of Animal Science and Biotechnology, 2023, 14(1):141. [25] 彭定威, 李瑞强, 曾武, 等. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3):261-270. PENG DW, LI RQ, ZENG W, et al. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Hereditas (Beijing), 2021, 43(3):261-270. [26] FAN ZY, LIU ZG, XU K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Science China Life Sciences, 2022, 65(2):362-375. [27] ZHENG QT, LIN J, HUANG JJ, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):E9474-E9482. [28]郭春和, 陈永杰, 张晓晓, 等. 猪抗病育种研究进展[J/OL]. 中国畜牧杂志, 2025:1-14. [2025-02-11]. https://doi.org/10.19556/j.0258-7033.20240513-09. GUO CH, CHEN YJ, ZHANG XX, et al. Research progress of disease resistance breeding in pigs[J]. Chinese Journal of Animal Science, 2025:1-14. [2025-02-11]. https://doi.org/10.19556/j.0258-7033.20240513-09. [29] WHITWORTH KM, ROWLAND RRR, EWEN CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [30] XU K, ZHOU YR, MU YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9:e57132. [31] KOBAYASHI T, YAMAGUCHI T, HAMANAKA S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells[J]. Cell, 2010, 142(5):787-799. [32] YAMAGUCHI T, SATO H, KATO-ITOH M, et al. Interspecies organogenesis generates autologous functional islets[J]. Nature, 2017, 542(7640):191-196. [33] WU J, PLATERO-LUENGO A, SAKURAI M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3):473-486.e15. [34] FU R, YU DW, REN JL, et al. Domesticated Cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein & Cell, 2020, 11(2):97-107. [35] WANG JW, XIE WG, LI N, et al. Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation[J]. Cell Stem Cell, 2023, 30(9):1235-1245.e6. [36] LAI LX, KOLBER-SIMONDS D, PARK KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science (New York, N Y), 2002, 295(5557):1089-1092. [37] MOAZAMI N, STERN JM, KHALIL K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients[J]. Nature Medicine, 2023, 29(8):1989-1997. [38] YAN S, TU ZC, LIU ZM, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease[J]. Cell, 2018, 173(4):989-1002.e13. [39] LIN YQ, LI CJ, CHEN YZ, et al. RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington’s disease models[J]. Molecular Neurodegeneration, 2025, 20(1):4. [40] DU XG, GUO ZH, FAN WH, et al. Establishment of a humanized swine model for COVID-19[J]. Cell Discovery, 2021, 7(1):70. [41] KIM D, KIM S, KIM S, et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq[J]. Genome Research, 2016, 26(3):406-415. [42] HSU PD, SCOTT DA, WEINSTEIN JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9):827-832. [43] MANGHWAR H, LI B, DING X, et al. CRISPR/cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects[J]. Advanced Science, 2020, 7(6):1902312. [44] FISCHER K, KRANER-SCHEIBER S, PETERSEN B, et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing[J]. Scientific Reports, 2016, 6:29081. [45] GE WK, GOU SX, ZHAO XZ, et al. In vivo evaluation of guide-free Cas9-induced safety risks in a pig model[J]. Signal Transduction and Targeted Therapy, 2024, 9(1):184. [46] TSAI SQ, JOUNG JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases[J]. Nature Reviews Genetics, 2016, 17(5):300-312. [47] TAN WF, CARLSON DF, LANCTO CA, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41):16526-16531. [48] ZHANG JQ, GUO JX, WU XJ, et al. Optimization of sgRNA expression strategy to generate multiplex gene-edited pigs[J]. Zoological Research, 2022, 43(6):1005-1008. [49] MCCARTY NS, GRAHAM AE, STUDENá L, et al. Multiplexed CRISPR technologies for gene editing and transcriptional regulation[J]. Nature Communications, 2020, 11(1):1281. [50] LI YH, WENG YT, BAI DD, et al. Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation[J]. Nature Communications, 2020, 11(1):4593. [51] WRAY-CAHEN D, HALLERMAN E, TIZARD M. Global regulatory policies for animal biotechnology: overview, opportunities and challenges[J]. Frontiers in Genome Editing, 2024, 6:1467080. [52] 谢红月, 潘鹏, 罗云彦, 等. 巴马香猪FABP4基因的克隆及其组织表达分析[J]. 黑龙江畜牧兽医, 2020(21): 19-24. XIE HY, PAN P, LUO YY, et al. Cloning and expression analysis of FABP4 gene in Bama Xiang pig[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(21):19-24. |
[1] | 冯沈泂, 倪征钰, 马 昭, 孙尉峻, 张林林, 杜旭光. 基因编辑异种器官移植供体猪的研究进展[J]. 中国猪业, 2025, 20(2): 5-14. |
[2] | 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34. |
[3] | 李云蕾, 叶凯文, 熊明福, 李 健, 刘亚星, 李超程, 孔思远, 张永生. 基因编辑技术在猪分子育种中的研究进展与前景展望[J]. 中国猪业, 2025, 20(2): 35-50. |
[4] | 骆庆龙,练胜举,王 婧,龙次民,刘 梅. 猪肾在生物医学中的应用[J]. 中国猪业, 2025, 20(2): 51-62. |
[5] | 高祥,王拓原,孙雅妮,崔清明,彭英林,陈晨. 地方猪育种研究进展[J]. 中国猪业, 2025, 20(2): 63-74. |
[6] | 徐桢,贺媛媛,刘凯,曹亚鸽,李莉,卫恒习,张守全. 烯丙孕素处理对初产母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 75-83. |
[7] | 李洪,戴琦,熊汉成,吴丽艳. 不同有效精子数的自动仿生输精技术对母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 84-92. |
[8] | 张汉宁,兰干球,梁晶. 饲料中添加地黄多糖对母猪繁殖性能和育肥猪生长性能的影响[J]. 中国猪业, 2025, 20(2): 93-100. |
[9] | 杨馨雨, 车炼强, 陈代文, 伍爱民. 铁营养与仔猪腹泻[J]. 中国猪业, 2025, 20(1): 3-11. |
[10] | 李玉莲, 范觉鑫, 谭 红, 李朝晖, 吴攀峰, 李茜茜, 王 洁, 刘冬明, 吴买生. 复合饲料添加剂对沙子岭猪肥育性能、胴体性能及肌肉品质的影响[J]. 中国猪业, 2025, 20(1): 26-34. |
[11] | 张 航, 杨宇泽, Jesse Oluwaseun Ayantoye, 董建华, 潘红梅, 赵学明. 猪精子冷冻保存研究进展[J]. 中国猪业, 2025, 20(1): 35-46. |
[12] | 雷国凤, 陈奎蓉, 和艺云, 梁 晶. 广西地方猪品种肌内脂肪含量及相关基因表达分析[J]. 中国猪业, 2025, 20(1): 47-54. |
[13] | 杜玉诗, 郭建凤, 王为全. 烟台黑猪和长烟杂交猪繁殖性能及育肥产肉性能比较[J]. 中国猪业, 2025, 20(1): 55-62. |
[14] | 林 艳, 夏嘉鑫, 周远成, 李 敏, 郑勤琴, 陈莉群, 岳丰雄. 猪肠病毒 G 型的分离鉴定及致病性研究[J]. 中国猪业, 2025, 20(1): 63-72. |
[15] | 陈 佶, 刘伟华, 魏建超. 猪舍非线性环境因素对猪生产性能影响的研究进展[J]. 中国猪业, 2025, 20(1): 73-83. |
|