[1] 中华人民共和国农业农村部. 年度数据[EB/OL]. http://zdscxx.moa.gov.cn:8080/nyb/pc/frequency.jsp.
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Annual data[EB/OL]. http://zdscxx.moa.gov.cn:8080/nyb/pc/frequency.jsp.
[2] 高航, 袁雄坤, 姜丽丽, 等. 猪舍环境参数研究综述[J]. 中国农业科学, 2018, 51(16):3226-3236.
GAO H, YUAN XK, JIANG LL, et al. Review of environmental parameters in pig house[J]. Scientia Agricultura Sinica, 2018, 51(16):3226-3236.
[3] 乔金亮. “猪周期”有了新变化[N]. 经济日报. 2023-10-24(5).
QIAO JL. The pig cycle has undergone new changes[N]. Economic Daily. 2023-10-24(5).
[4] 刘艳昌, 吴延昌, 郭颖轩, 等. 生猪生长环境舒适度实时监测系统设计与实现[J]. 家畜生态学报, 2024, 45(6):76-81,96.
LIU YC, WU YC, GUO YX, et al. Design and implementation of real-time monitoring system for environmental comfort level in pig house[J]. Journal of Domestic Animal Ecology, 2024, 45(6):76-81,96.
[5] 代小蓉, Ji-Qin Ni, 潘乔纳, 等. 华东地区典型保育猪舍温湿度和空气质量监测[J]. 农业机械学报, 2016, 47(7):315-322.
DAI XR, JIQIN N, PAN QN, et al. Monitoring of tempreature, humidity and air quality inside pig weaner house in Eastern China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7):315-322.
[6] LEE IK, KYE YC, KIM G, et al. Stress, nutrition, and intestinal immune responses in pigs - a review[J]. Asian-Australasian Journal of Animal Sciences, 2016, 29(8):1075-1082.
[7] SEGURA J, CALVO L, ESCUDERO R, et al. Alleviating heat stress in fattening pigs: low-intensity showers in critical hours alter body external temperature, feeding pattern, carcass composition, and meat quality characteristics[J]. Animals, 2024, 14(11):1661.
[8] 颜培实, 李如治. 家畜环境卫生学(第4版)[M]. 北京: 高等教育出版社, 2011:28-29.
YAN PS, LI RZ. Domestic animals and environmental hygiene(4th ed)[M]. Beijing: Higher Education Press, 2011:28-29.
[9] MOREIRA VE, VERONEZE R, DOS REIS TEIXEIRA A, et al. Effects of ambient temperature on the performance and thermoregulatory responses of commercial and crossbred (Brazilian piau purebred sires×commercial dams) growing-finishing pigs[J]. Animals, 2021, 11(11):3303.
[10] OCEPEK M, ANDERSEN IL. The effects of pen size and design, bedding, rooting material and ambient factors on pen and pig cleanliness and air quality in fattening pig houses[J]. Animals, 2022, 12(12):1580.
[11] VANDE POL KD, GROHMANN NS, WEBER TE, et al. Influence of high cyclic ambient temperature and water drinker design on growth performance and water disappearance of growing-finishing pigs[J]. Translational Animal Science, 2022, 6(3):txac117.
[12] OGAWA S, OHNISHI C, SATOH M. Effect of ambient temperature on average daily gain of pigs evaluated using public weather data and a plateau-linear regression model[J]. Animal Science Journal, 2022, 93(1):e13762.
[13] NAGA ME, RAO VG, PRASANNA M, et al. Influence of pre-slaughter environmental temperature on meat quality of crossbred pigs of Andhra Pradesh[J]. Journal of Meat Science, 2021, 16(1and2):66-68.
[14] MUN HS, RATHNAYAKE D, DILAWAR MA, et al. Effect of ambient temperature on growth performances, carcass traits and meat quality of pigs[J]. Journal of Applied Animal Research, 2022, 50(1):103-108.
[15] RAUW WM, DE MERCADO DE LA PE?A E, GOMEZ-RAYA L, et al. Impact of environmental temperature on production traits in pigs[J]. Scientific Reports, 2020, 10(1):2106.
[16] 司徒金水, 朱晓彤, 江青艳, 等. 环境因素对猪生产性能的影响[J]. 家畜生态学报, 2021, 42(8):8-14.
SITU JS, ZHU XT, JIANG QY, et al. Influence of environmental factors on pig performance[J]. Journal of Domestic Animal Ecology, 2021, 42(8):8-14.
[17] 靳才勇. 环境温度对猪生长发育的影响与对策[J]. 农业技术与装备, 2016(12):83-85.
JIN CY. Effects and countermeasures of environment temperature on pig growth[J]. Agricultural Technology & Equipment, 2016(12):83-85.
[18] LEE H, PERKINS C, GRAY H, et al. Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales[J]. Epidemiology and Infection, 2020, 148:e30.
[19] KIM YJ, SONG MH, LEE SI, et al. Evaluation of pig behavior changes related to temperature, relative humidity, volatile organic compounds, and illuminance[J]. Journal of Animal Science and Technology, 2021, 63(4):790-798.
[20] 汪开英, 苗香雯, 崔绍荣, 等. 猪舍环境温湿度对育成猪的生理及生产指标的影响[J]. 农业工程学报, 2002, 18(1):99-10.
WANG KY, MIAO XW, CUI SR, et al. Effects of ambient temperature and relative humidity on physiological parameters and performance of growing pigs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(1):99-10.
[21] 夏九龙, 刁华杰, 冯京海, 等. 温热环境对育肥猪体温调节的影响规律[J]. 动物营养学报, 2016, 28(11):3386-3390.
XIA JL, DIAO HJ, FENG JH, et al. Regularities of thermoregulation in finishing swine affected by thermal-humidity environment[J]. Chinese Journal of Animal Nutrition, 2016, 28(11):3386-3390.
[22] 吴武豪. 基于物联网的猪舍环境监控系统研究[D]. 杭州: 浙江大学, 2014.
WU WH. A study on piggery environmental monitoring and control systems based on internet og things. Hangzhou: Zhejiang University, 2014.
[23] 马秀芬. 高温季节种公猪的饲养管理要点[J]. 养猪, 2024(6):36-37.
MA XF. Key points for feeding and management of boars during high temperature season[J]. Swine Production, 2024(6):36-37.
[24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 规模猪场环境参数及环境管理: GB/T 17824.3—2008[S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Environmental parameters and environmental management for intensive pig farms: GB/T 17824.3—2008[S]. Beijing:Standards Press of China, 2008.
[25] DAVIS P, WAINWRIGHT N, EDWARDS S. Lighting in pig buildings: the principles[M]. Warwickshire: Agriculture and Horticulture Development Board Pork, 2019:17.
[26] CHARMAN D. Lighting in pig buildings: in practice[M]. Warwickshire: Agriculture and Horticulture Development Board PORK, 2019:4.
[27] BARNKOB LL, PETERSEN PM, NIELSEN JP, et al. Vitamin D enhanced pork from pigs exposed to artificial UVB light in indoor facilities[J]. European Food Research and Technology, 2019, 245(2):411-418.
[28] HASAN M, REYER H, OSTER M, et al. Exposure to artificial ultraviolet-B light mediates alterations on the hepatic transcriptome and vitamin D metabolism in pigs[J]. 2024, 236:106428.
[29] PRIETO OB, CATALáN J, LLEONART M, et al. Red-light stimulation of boar semen prior to artificial insemination improves field fertility in farms: a worldwide survey[J]. Reproduction in Domestic Animals, 2019, 54(8):1145-1148.
[30] BLANCO-PRIETO O, MASIDE C, PE?A à, et al. The effects of red LED light on pig sperm function rely upon mitochondrial electron chain activity rather than on a PKC-mediated mechanism[J]. Frontiers in Cell and Developmental Biology, 2022, 10:930855.
[31] 姚春燕, 李琴, 王强军, 等. 光照对猪生产性能及生理节律的影响[J]. 畜牧与兽医, 2019, 51(9):113-118.
YAO CY, LI Q, WANG QJ, et al. Effects of light on production performance and physiological rhythm of pigs[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(9):113-118.
[32] SCAILLIEREZ AJ, VAN NIEUWAMERONGEN-DE KS, BOUMANS IJMM, et al. Effect of light intensity on behaviour, health and growth of growing-finishing pigs[J]. Animal, 2024, 18(3):101092.
[33] OPDERBECK S, KE?LER B, GORDILLO W, et al. Influence of increased light intensity on the acceptance of a solid lying area and a slatted elimination area in fattening pigs[J]. Agriculture, 2020, 10(3):56.
[34] TAYLOR N, PRESCOTT N, PERRY G, et al. Preference of growing pigs for illuminance[J]. Applied Animal Behaviour Science, 2006, 96(1/2):19-31.
[35] LEE CB, HOSSEINDOUST A, HA SH, et al. Improvement of weanling pigs immune status and metabolic condition using ultraweak light[J]. Journal of Animal Physiology and Animal Nutrition, 2024, 108(1):72-80.
[36] CHOKOE TC, SIEBRITS FK. Effects of season and regulated photoperiod on the reproductive performance of sows[J]. South African Journal of Animal Science, 2009, 39(1):45-54.
[37] OH BW, SEO HJ, SEO IH. Ventilation operating standard for improving internal environment in pig house grafting working conditions using CFD[J]. AgriEngineering, 2023, 5(3):1378-1394.
[38] RATHNAYAKE D, MUN HS, DILAWAR MA, et al. Effect of air heat pump cooling system as a greener energy source on the air quality, housing environment and growth performance in pig house[J]. Atmosphere, 2021, 12(11):1474.
[39] CHOI LY, LEE SY, JEONG H, et al. Ammonia and particulate matter emissions at a Korean commercial pig farm and influencing factors[J]. Animals, 2023, 13(21):3347.
[40] RODRIGUEZ MR, LOSADA E, BESTEIRO R, et al. Evolution of NH3 concentrations in weaner pig buildings based on setpoint temperature[J]. Agronomy, 2020, 10(1):107.
[41] WITT J, KRIETER J, SCHR?DER K, et al. Comparison of three different measuring devices of ammonia and evaluation of their suitability to assess animal welfare in pigs[J]. Livestock Science, 2024, 279:105372.
[42] VERMEER HM, HOPSTER H. Operationalizing principle-based standards for animal welfare-indicators for climate problems in pig houses[J]. Animals, 2018, 8(4):44.
[43] 李雪, 陈凤鸣, 熊霞, 等. 饲养密度对猪群健康和猪舍环境的影响[J]. 动物营养学报, 2017, 29(7):2245-2251.
LI X, CHEN FM, XIONG X, et al. Effects of stocking density on piggery’s health and environment in pig house[J]. Chinese Journal of Animal Nutrition, 2017, 29(7):2245-2251.
[44] WANG TX, HE QY, YAO WL, et al. The variation of nasal microbiota caused by low levels of gaseous ammonia exposure in growing pigs[J]. Frontiers in Microbiology, 2019, 10:1083.
[45] 段彦生. 氨暴露对生长猪肠道屏障、微生物及代谢物的影响[D]. 太谷: 山西农业大学, 2022.
DUAN YS. Effects of ammonia exposure on intestinal barrier, microbiology and metabolomics in growing pigs[D]. Taigu: Shanxi Agricultural University, 2022.
[46] TANG SL, ZHONG RQ, YIN C, et al. Exposure to high aerial ammonia causes hindgut dysbiotic microbiota and alterations of microbiota-derived metabolites in growing pigs[J]. Frontiers in Nutrition, 2021, 8:689818.
[47] LI YT, ZHANG RX, LI X, et al. Exposure to the environmental pollutant ammonia causes changes in gut microbiota and inflammatory markers in fattening pigs[J]. Ecotoxicology and Environmental Safety, 2021, 208:111564.
[48] TANG SL, YIN C, XIE JJ, et al. Aerial ammonia exposure induces the perturbation of the interorgan ammonia disposal and branched-chain amino acid catabolism in growing pigs[J]. Animal Nutrition, 2021, 7(4):947-958.
[49] WANG XT, WANG MY, CHEN SZ, et al. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study[J]. Ecotoxicology and Environmental Safety, 2020, 205:111050.
[50] CHEN YJ, ZHANG RX, DING SS, et al. Transcriptome revealed exposure to the environmental ammonia induced oxidative stress and inflammatory injury in spleen of fattening pigs[J]. Animals, 2022, 12(9):1204.
[51] WANG H, ZENG XY, ZHANG XX, et al. Ammonia exposure induces oxidative stress and inflammation by destroying the microtubule structures and the balance of solute carriers in the trachea of pigs[J]. Ecotoxicology and Environmental Safety, 2021, 212:111974.
[52] ZHANG XX, WANG AQ, CHEN Y, et al. Intestinal barrier dysfunction induced by ammonia exposure in pigs in vivo and in vitro: the protective role of L-selenomethionine[J]. Ecotoxicology and Environmental Safety, 2022, 248:114325.
[53] CHOI HL, KIM KY, KIM H. Correlation of air pollutants and thermal environment factors in a confined pig house in winter[J]. Asian-Australasian Journal of Animal Sciences, 2005, 18(4):574-579.
[54] BESWICK-HONN JM, PETERS TM, RENéE ANTHONY T. Evaluation of low-cost hydrogen sulfide monitors for use in livestock production[J]. Journal of Agricultural Safety and Health, 2017, 23(4):265-279.
[55] LIU DJ, RONG L, SCHAUBERGER G, et al. A preliminary study on dispersion modeling of hydrogen sulfide from a six-story pig house in China[C]//International Research Center for Animal Environment and Welfare. Animal Environment and Welfare-Proceedings of International Symposium. Beijing: China Agriculture Press, 2019:127-1.
[56] 陈小风. 硫化氢胁迫对断奶仔猪生长性能、免疫性能及肠道微生物的影响[D]. 保定: 河北农业大学, 2019.
CHEN XF. Effect of hydrogen sulfide stress on growth and immune performance of weaning piglets[D]. Baoding: Hebei Agricultural University, 2019.
[57] LIU Z, FU Q, TANG SL, et al. Proteomics analysis of lung reveals inflammation and cell death induced by atmospheric H2S exposure in pig[J]. Environmental Research, 2020, 191:110204.
[58] 陈磊, 刘真, 谢彦娇, 等. H2S暴露对保育猪氧化还原状态及硫化氢代谢的影响[J]. 畜牧兽医学报, 2022, 53(9): 3052-3062.
CHEN L, LIU Z, XIE YJ, et al. Effects of H2S exposure on redox status and hydrogen sulfide metabolism in nursery pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3052-3062.
[59] 郭英楠. 大气二氧化碳浓度达历史顶点[J]. 生态经济, 2019, 35(7):5-8.
GUO YN. Atmospheric carbon dioxide concentration reaches historical peak[J]. Ecological Economy, 2019, 35(7):5-8.
[60] 周丹, 刁亚萍, 高云, 等. 猪舍内CO2的排放研究进展[J]. 中国农业科学, 2018, 51(16):3201-3213.
ZHOU D, DIAO YP, GAO Y, et al. Research review on CO2 production in pig house[J]. Scientia Agricultura Sinica, 2018, 51(16):3201-3213.
[62] DEB NC, BASAK JK, PAUDEL B, et al. Emission of CO2 in a livestock barn based on diurnal activities and various growing stages of pigs[J]. Air Quality, Atmosphere & Health, 2023, 16(7):1443-1454.
[63] AARNINK AJA, LEE IB. Optimal indoor climate by partial recirculation of air in a fattening pig house[C]// In: International Research Center for Animal Environment and Welfare. Animal Environment and Welfare-Proceedings of International Symposium. Beijing: China Agriculture Press, 2019:381-388.
[64] KC L, JOHNSON AK, KARRIKER LA, et al. Assessment of aversion to different concentration of CO2 gas by weaned pigs using an approach-avoidance paradigm[M]. Herts: Humane Slaughter Association, 2014.
[65] FRIES R, RINDERMANN G, SIEGLING-VLITAKIS C, et al. Blood parameters and corneal-reflex of finishing pigs with and without lung affections observed post mortem in two abattoirs stunning with CO2[J]. Research in Veterinary Science, 2013, 94:186-190.
[66] VERHOEVEN M, GERRITZEN M, VELARDE A, et al. Time to loss of consciousness and its relation to behavior in slaughter pigs during stunning with 80 or 95% carbon dioxide[J]. Frontiers in Veterinary Science, 2016, 3:38.
[67] ATKINSON S, ALGERS B, PALLISERA J, et al. Animal welfare and meat quality assessment in gas stunning during commercial slaughter of pigs using hypercapnic-hypoxia (20% CO2 2% O2) compared to acute hypercapnia (90% CO2 in air)[J]. Animals, 2020, 10(12):2440.
[68] 龙沈飞, 贺腾飞, 张校军, 等. 猪的智能化饲养管理和环境控制研究进展[J]. 中国畜牧杂志, 2023, 59(5):34-39.
LONG SF, HE TF, ZHANG XJ, et al. Research progress on intelligent feeding management and environmental control of pigs[J]. Chinese Journal of Animal Science, 2023, 59(5):34-39.
[69] 谢晓丽, 胡天让, 杨国华, 等. 现代化猪舍有害气体智能检测及控制系统的设计[J]. 现代农机, 2021(3):72-74.
XIE XL, HU TR, YANG GH, et al. Design of intelligent detection and control system for harmful gases in modern pig sheds [J]. Modern Agricultural Machinery, 2021(3):72-74.
[70] ZHUANG SJ, VAN OVERBEKE P, VANGEYTE J, et al. Evaluation of a cost-effective ammonia monitoring system for continuous real-time concentration measurements in a fattening pig barn[J]. Sensors, 2019, 19(17):3669.
[71] 张锦瑞, 申仲健, 吴中红, 等. 次氯酸洗涤器对楼房猪舍排风污染物的减排效果评价[J]. 中国畜牧杂志, 2022, 58(8):299-305,312.
ZHANG JR, SHEN ZJ, WU ZH, et al. Evaluation of the emission reduction effect of hypochlorous acid scrubber on exhaust pollutants from building pigsties[J]. Chinese Journal of Animal Science, 2022, 58(8):299-305,312.
[72] 谢金武, 周庆华, 汪加明, 等. 现代养猪业减少臭气排放措施的研究进展[J]. 养猪, 2022(2):85-88.
XIE JW, ZHOU QH, WANG JM, et al. Research progress on measures to reduce odor emissions in modern pig farming industry[J]. Swine Production, 2022(2):85-88.
[73] 杨晓琪. 双极膜水解离催化层构筑与性能调控[D]. 合肥: 中国科学技术大学, 2023.
YANG XQ. Precisely modify the interface layer and improve water dissociation property of bipolar membrane[D]. Hefei: University of Science and Technology of China, 2023. |