中国猪业 ›› 2024, Vol. 19 ›› Issue (1): 84-89.doi: 10.16174/j.issn.1673-4645.2024.01.012
尹令,罗泗港,吴珍芳,蔡更元,沈卓婷,李钦萍,周润林
摘要: 采用逆向工程技术进行猪体的三维重建并测算,是低成本无接触式猪体型体况评估的一大解决方案,在比较单视角和多视角采集方法的优缺点后,本文提出基于深度学习的点云补全方法,将猪体局部点云恢复成一个完整的点云以实现猪体三维重建。该猪体点云补全方法基于点代理增强和逐层上采样,首先通过特征提取结合位置嵌入生成点代理,使用点代理增强Transformer进一步提高点代理的特征表示能力,再基于点代理通过逐层上采样由粗到细逐步恢复最终的高分辨率、细粒度和分布均匀的完整点云。本文对实际生产环境中采集的猪体点云进行补全,所提方法与目前主流的点云补全方法进行对比试验,在多个指标的评定上,本文提出的方法都取得了较好性能,尤其是在猪体点云缺失严重补全难度较大的情况下效果更为突出。试验证明该方法对猪体主干部位的补全具备应用价值,能够用于实现基于局部点云的猪体三维点云重建。
[1]司永胜, 安露露, 刘刚, 等. 基于Kinect相机的猪体理想姿态检测与体尺测量[J]. 农业机械学报, 2019, 50(1):58-65. Si YS, An LL, Liu G, et al.Ideal Posture Detection and Body Size Measurement of Pig Based on Kinect[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):58-65. [2]滕光辉, 申志杰, 张建龙, 等. 基于Kinect传感器的无接触式母猪体况评分方法[J]. 农业工程学报, 2018, 34(13): 211-217. Teng GH, Shen ZJ, Zhang JL, et al. Non-contact sow body condition scoring method based on Kinect sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 211-217. [3] Shi S, Yin L, Liang SH, et al. Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras[J]. Computers and Electronics in Agriculture, 2020, 175: 105543-105552. [4] 尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23):201-208. Yin L, Cai GY, Tian XH, et al. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 201-208. [5]刘同海, 滕光辉, 张盛南, 等. 基于点云数据的猪体曲面三维重建与应用[J]. 农业机械学报, 2014, 45(6):291-295. Liu TH, Teng GH, Zhang SN, et al. Reconstruction and Application of 3D Pig Body Model Based on Point Cloud Data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6):291-295. [6] Yuan W, Khot T, Held D, et al. Pcn: point completion network[C]//In: 2018 international conference on 3D vision (3DV). IEEE, 2018. [7] Tchapmi LP, Kosaraju V, Rezatofighi H, et al. Topnet: structural point cloud decoder[C]//In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. [8] Xie H, Yao H, Zhou S, et al. Grnet: Gridding residual network for dense point cloud completion[C]//In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX. Cham: Springer International Publishing, 2020. [9] Xiang P, Wen X, Liu YS, et al. Snowflakenet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [10] Yu X, Rao Y, Wang Z, et al. Pointr: Diverse point cloud completion with geometry-aware transformers[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [11] Yu X, Rao Y, Wang Z, et al. AdaPoinTr: Diverse point cloud completion with adaptive geometry-aware transformers[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2023, 45(12): 14114-14130. [12] Zhou H, Cao Y, Chu W, et al. Seedformer: patch seeds based point cloud completion with upsample transformer[C]//In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III. Cham: Springer Nature Switzerland, 2022. [13] 曾安, 彭杰威, 刘畅, 等. 基于多尺度几何感知Transformer的植物点云补全网络[J]. 农业工程学报, 2022, 38(4): 198-205. Zeng A, Peng JW, Liu C, et al. Plant point cloud completion network based on multi-scale geometry-aware point Transformer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 198-205. [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv, 2017. doi: 10.48550/arXiv.1706.03762. [15] Qi CR, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. 2017. doi: 10.48550/arXiv.1706.02413. [16] Zhao H, Jiang L, Jia J, et al. Point transformer[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [17] Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. Acm Transactions On Graphics (tog), 2019, 38(5):1-12. [18] Fan H, Su H, Guibas LJ. A point set generation network for 3d object reconstruction from a single image[C]//In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. [19] Wu T, Pan L, Zhang JZ, et al. Balanced chamfer distance as a comprehensive metric for point cloud completion[J]. Advances in Neural Information Processing Systems, 2021, 34: 29088-29100. |
[1] | 冯沈泂, 倪征钰, 马 昭, 孙尉峻, 张林林, 杜旭光. 基因编辑异种器官移植供体猪的研究进展[J]. 中国猪业, 2025, 20(2): 5-14. |
[2] | 王文娜, 齐世宏, 余大为, 黄永业. 基因编辑猪的遗传改良与生物医学应用:技术潜力与现实挑战[J]. 中国猪业, 2025, 20(2): 15-22. |
[3] | 段晓翠,白文娟,史潇靖,周 荣,王子帅. 基因编辑猪的应用进展[J]. 中国猪业, 2025, 20(2): 23-34. |
[4] | 李云蕾, 叶凯文, 熊明福, 李 健, 刘亚星, 李超程, 孔思远, 张永生. 基因编辑技术在猪分子育种中的研究进展与前景展望[J]. 中国猪业, 2025, 20(2): 35-50. |
[5] | 骆庆龙,练胜举,王 婧,龙次民,刘 梅. 猪肾在生物医学中的应用[J]. 中国猪业, 2025, 20(2): 51-62. |
[6] | 高祥,王拓原,孙雅妮,崔清明,彭英林,陈晨. 地方猪育种研究进展[J]. 中国猪业, 2025, 20(2): 63-74. |
[7] | 徐桢,贺媛媛,刘凯,曹亚鸽,李莉,卫恒习,张守全. 烯丙孕素处理对初产母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 75-83. |
[8] | 李洪,戴琦,熊汉成,吴丽艳. 不同有效精子数的自动仿生输精技术对母猪繁殖性能的影响[J]. 中国猪业, 2025, 20(2): 84-92. |
[9] | 张汉宁,兰干球,梁晶. 饲料中添加地黄多糖对母猪繁殖性能和育肥猪生长性能的影响[J]. 中国猪业, 2025, 20(2): 93-100. |
[10] | 杨馨雨, 车炼强, 陈代文, 伍爱民. 铁营养与仔猪腹泻[J]. 中国猪业, 2025, 20(1): 3-11. |
[11] | 李玉莲, 范觉鑫, 谭 红, 李朝晖, 吴攀峰, 李茜茜, 王 洁, 刘冬明, 吴买生. 复合饲料添加剂对沙子岭猪肥育性能、胴体性能及肌肉品质的影响[J]. 中国猪业, 2025, 20(1): 26-34. |
[12] | 张 航, 杨宇泽, Jesse Oluwaseun Ayantoye, 董建华, 潘红梅, 赵学明. 猪精子冷冻保存研究进展[J]. 中国猪业, 2025, 20(1): 35-46. |
[13] | 雷国凤, 陈奎蓉, 和艺云, 梁 晶. 广西地方猪品种肌内脂肪含量及相关基因表达分析[J]. 中国猪业, 2025, 20(1): 47-54. |
[14] | 杜玉诗, 郭建凤, 王为全. 烟台黑猪和长烟杂交猪繁殖性能及育肥产肉性能比较[J]. 中国猪业, 2025, 20(1): 55-62. |
[15] | 林 艳, 夏嘉鑫, 周远成, 李 敏, 郑勤琴, 陈莉群, 岳丰雄. 猪肠病毒 G 型的分离鉴定及致病性研究[J]. 中国猪业, 2025, 20(1): 63-72. |
|