中国猪业 ›› 2024, Vol. 19 ›› Issue (2): 35-42.doi: 10.16174/j.issn.1673-4645.2024.02.004

• 遗传繁殖 • 上一篇    下一篇

基因组编辑技术加速猪育种进程

王佳昊,王月,吴添文,王彦芳   

  • 出版日期:2024-05-09 发布日期:2024-04-25

  • Online:2024-05-09 Published:2024-04-25

摘要: 依赖于核酸酶的基因组编辑技术能够在基因组水平对DNA 序列进行改造,包括特定DNA 片段的插入、敲除、替换以及点突变等遗传修饰。2012 年发展起来的CRISPR/Cas9 基因编辑技术,具有效率高、通量高、安全性高、操作方便、简单易实现等特点,得到了广泛的关注和应用。基于CRISPR/Cas9 系统开发的碱基编辑系统(Base Editor, BE)和引导编辑系统(Prime Editor, PE)可以在不需要DNA 模板的情况下对基因进行精准的碱基突变。目前,CRISPR/Cas9 及其衍生的基因组编辑技术在猪生产性状的改良和抗病育种新材料的创制方面已经取得了良好进展,并展示出了巨大的发展潜力和应用前景。本文重点介绍了CRISPR/Cas9、碱基编辑、引导编辑技术及其在猪育种中的研究进展,并展望了猪基因组编辑育种面临的机遇与挑战。

关键词: 猪, 基因组编辑, CRISPR/Cas9, 生产性能, 育种

中图分类号:  S828;S813.3

[1] SCULLY R, PANDAY A, ELANGO R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nature Reviews. Molecular Cell Biology, 2019, 20(11):698-714. [2] DELTCHEVA E, CHULINSKI K, SHARMA CM, et al. CRISPR RNA maturation by transencoded small RNA and host factor RNaseⅢ[J]. Nature, 2011, 471(7340):602-607. [3] WANG T, WEI JJ, SABATINI DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166):80-84. [4] CONG L, RAN FA, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [5] KOMOR AC, KIM YB, PACKER MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7604):420-424. [6] GAUDELLI NM, KOMOR AC, REES HA, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [7] ZHAO DD, LI J, LI SW, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology, 2021, 39(1):35-40. [8] ZHANG XH, ZHU BY, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7):856-860. [9] 王煜, 宋瑞高, 赵建国, 等. 碱基编辑器介导的猪IGF2基因高效定点突变[J]. 中国畜牧兽医, 2020, 47(11):3427-3435. WANG Y, SONG RG, ZHAO JG, et al. Efficient site-directed mutation of porcine IGF2 gene via base editors[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(11):3427-3435. [10] ANZALONE AV, RANDOLPH PB, DAVIS JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. [11] QI Y, ZHANG Y, TIAN S, et al. An optimized prime editing system for efficient modification of the pig genome[J]. Science China Life Sciences, 2023, 66(12):2851-2861. [12] VAN LAERE AS, NGUYEN M, BRAUNSCHWEIG M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425(6960):832-836. [13] MARKLJUNG E, JIANG L, JAFFE JD, et al. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth[J]. PLoS Biology, 2009, 7(12):e1000256. doi: 10.1371/journal.pbio.1000256. [14] XIANG G, REN J, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cellular and Molecular Life Sciences CMLS, 2018, 75(24):4619-4628. [15] DUO T, LIU X, MO D, et al. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs[J]. Journal of Animal Science and Biotechnology, 2023, 14(1):141. [16] WANG D, PAN D, XIE B, et al. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets[J]. PLoS Genetics, 2021, 17(10):e1009862. [17] MAPHERRON AC, LAWLER AM, LEE SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628):83-90. [18] MAPHERRON AC, LEE SJ. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(23):12457-12461. [19] SCHUELKE M, WAGNER KR, STOLZ LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. The New England Journal of Medicine, 2004, 350(26):2682-2688. [20] SHELTON GD, ENGVALL E. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene[J]. Neuromuscular Disorders, 2007, 17(9-10):721-722. [21] QIAN L, TANG M, YANG J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 2015(5):14435. [22] FAN Z, LIU Z, XU K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Science China Life Sciences, 2022, 65(2):362-375. [23] WANG KK, OUYANG HS, XIE ZC, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5:16623. doi: 10.1038/srep16623. [24] BI YZ, HUA ZD, LIU XM, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 2016(6):31729. doi: 10.1038/srep31729. [25] PENG DW, LI RQ, ZENG W, et al. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Hereditas (Beijing), 2021, 43(3):261-270. [26] HOU LJ, SHI J, CAO LB, et al. Pig has no uncoupling protein 1[J]. Biochemical and Biophysical Research Communications, 2017, 487(4):795-800. [27] ZHENG QT, LIN J, HUANG JJ, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):E9474-E9482. [28] WHITWORTH KM, ROWLAND RR, EWEN Cl, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [29] 魏迎辉, 刘志国, 徐奎, 等. CD163双等位基因编辑猪的制备及传代[J]. 中国农业科学, 2018, 51(4):770-777. WEI YH, LIU ZG, XU K, et al. Generation and propagation of cluster of differentiation 163 biallelic gene editing pigs[J]. Scientia Agricultura Sinica, 2018, 51(4):770-777. [30] BURKARD C, OPRIESSNIG T, MILEHAM AJ, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. Journal of Virology, 2018, 92(16):415-418. [31] WANG H, SHEN L, CHEN J, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. International Journal of Biological Sciences, 2019, 15(9):1993-2005. [32] 王慧, 冯保亮, 吴丹, 等. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8):3127-3138. WANG H, FENG BL, WU D, et al. Research progress of CD163 gene and disease-resistant breeding on porcine reproductive and respiratory syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(08):3127-3138. [33] XIE ZC, PANG DX, YUAN HM, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathogens, 2018, 14(12):e1007193. doi: 10.1371/journal.ppat.1007193. [34] HANSEN GH, DELMAS B, BESNARDEAU L, et al. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment[J]. Journal of Virology, 1998, 72(1):527-534. [35] XU K, ZHOU YR, MU YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020(9):e57132. doi: 10.7554/eLife.57132. [36] SONG R, WANG Y, ZHENG Q, et al. One-step base editing in multiple genes by direct embryo injection for pig trait improvement[J]. Science China Life Sciences, 2022, 65(4):739-752. [37] XU H, XIAO TF, CHEN CH, et al. Sequence determinants of improved CRISPR sgRNA design[J]. Genome Research, 2015, 25(8):1147-1157. [38] ZHAO C, LIU H, XIAO T, et al. CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication[J]. Nature Communications, 2020, 11(1):5178.
[1] 张雯韬, 马思奇, 向鸿坤, 贺建华, 伍树松. 地方猪品种改良及营养调控研究进展[J]. 中国猪业, 2024, 19(2): 3-14.
[2] 段玖均, 刘金阳, 王在贵, 张顺芬, 张立兰, 王阳, 陈亮, 钟儒清. 非淀粉多糖酶组合对苏淮猪生长性能和肌肉风味氨基酸含量的影响[J]. 中国猪业, 2024, 19(2): 15-23.
[3] 李江凌, 张金灵, 陈晓晖, 王秋实, 赵素君, 刘锐, 吕学斌, 王宇萍, 龚建军, 何志平. 长白猪和藏猪在不同日龄、种间的代谢物差异分析[J]. 中国猪业, 2024, 19(2): 24-34.
[4] 张丰霞,杨德威,崔茂盛,李千军,闫峻,旦智草. 蕨麻猪产仔性状全基因组关联分析[J]. 中国猪业, 2024, 19(2): 43-51.
[5] 郭建凤. 性别对五莲黑猪胴体性能及肉品质的影响比较[J]. 中国猪业, 2024, 19(2): 52-58.
[6] 李金海,李兴玉. 我国猪蓝耳病NADC34-like毒株的流行病学及致病性研究进展[J]. 中国猪业, 2024, 19(2): 59-66.
[7] 阳红莲,何玉华,朱玲,徐志文. 藏香猪流行性腹泻病毒的PCR检测及毒株分型[J]. 中国猪业, 2024, 19(2): 67-73.
[8] 王学敏,廖超,涂枫,李碧侠,徐小波,付言峰. 规模化猪场粪污处理利用现状及案例分析[J]. 中国猪业, 2024, 19(2): 74-81.
[9] 刘洋,乌云花. 不同规模生猪养殖成本收益分析——以山东省为例[J]. 中国猪业, 2024, 19(2): 82-94.
[10] 袁俊伟. “上市猪企”股权激励与扩产行为比较分析[J]. 中国猪业, 2024, 19(2): 95-102.
[11] 周业勋, 李凯, 钟发刚, 张宏福. 开发油莎豆新型饲料资源大有潜力[J]. 中国猪业, 2024, 19(1): 3-10.
[12] 李敬, 毕庆悦, 金英海, 蒋显仁, 李习龙. 25-羟基维生素D3的生物学特性及其在猪禽生产中的应用[J]. 中国猪业, 2024, 19(1): 11-18.
[13] 李雨菁,郝瑞荣. 葡萄籽原花青素对不同生长阶段猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 19-24.
[14] 赵勤辉,许婷婷,刘家,汤海鸥. 复合营养性膏剂对新生仔猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 25-31.
[15] 黄志洋,淡海锋,沈林園,朱砺,甘麦邻. 常见商业化猪精子计数板使用效果与测试分析[J]. 中国猪业, 2024, 19(1): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!