中国猪业 ›› 2024, Vol. 19 ›› Issue (2): 15-23.doi: 10.16174/j.issn.1673-4645.2024.02.002

• 营养饲料 • 上一篇    下一篇

非淀粉多糖酶组合对苏淮猪生长性能和肌肉风味氨基酸含量的影响

段玖均,刘金阳,王在贵,张顺芬,张立兰,王阳,陈亮,钟儒清   

  • 出版日期:2024-05-09 发布日期:2024-04-25

  • Online:2024-05-09 Published:2024-04-25

摘要: 本试验旨在研究非淀粉多糖酶(NSPases)组方对苏淮猪生长性能、血液生化、肉品质和背最长肌中氨基酸含量的影响。试验选择140头(初始体重为29.8±2.6 kg)苏淮猪随机分成2个处理组,根据体重和性别因素每个处理均匀分配到5个栏位,每个栏14 头猪:对照组(CON)饲喂常规玉米—杂粕型基础饲粮;试验组(NSPm)饲喂添加了600 mg/kg NSPases复合酶(700 000 U/g 木聚糖酶,100 000 U/g β-葡聚糖酶和9 000 U/g 纤维素酶)的玉米—杂粕型基础饲粮。整个饲喂期共98 d,试验结束后分析NSPases 对苏淮猪生长性能、血清生化指标、肉质和背最长肌中的氨基酸含量的影响。结果显示:与对照组相比,试验组苏淮猪日增重提高50 g (P<0.05),并有明显提高日均采食量和降低料肉比的趋势,但方差分析未达显著性水平(P>0.1);与对照组相比,试验组苏淮猪背最长肌的水分含量、pH 值、滴水损失、剪切力和脂肪含量等没有产生显著性变化;但显著增加了背最长肌中风味氨基酸(天冬氨酸和谷氨酰胺)以及甜味氨基酸(丝氨酸、丙氨酸和苏氨酸)等氨基酸的含量(P<0.05);试验组苏淮猪血清中高密度脂蛋白胆固醇含量显著增加(P<0.05),其他各主要血液生化指标则差异不显著。结果显示,玉米—杂粕型基础饲粮添加NSPases 可以提高苏淮猪日增重等生长性能指标和背最长肌中主要风味氨基酸含量。

关键词: 苏淮猪, 非淀粉多糖酶, 生长性能, 肉品质

中图分类号:  S828;S816.73

[1] 刘金阳. 饲粮中添加益生菌对苏淮猪生长性能、胃肠道pH和肉品质的影响[D]. 合肥: 安徽农业大学, 2014. LIU JY. Effects of dietary probiotic on growth performance, gastrointestinal pH and meat quality of Suhuai pigs[D]. Hefei: Anhui Agricultural University, 2014. [2] 刘金阳, 王在贵, 张宏福, 等. 益生菌与饲粮组合效应对苏淮猪生长性能、胃肠道pH和肉品质的影响[J]. 畜牧兽医学报, 2014, 45(10):1648-1655. LIU JY, WANG ZG, ZHANG HF, et al. Effects of diets supplemented with probiotic on growth performance, gastrointestinal pH and meat quality of Suhuai pigs[J]. Chinese Journal of Animal and Veterinary Sciences, 2014, 45(10):1648-1655. [3] CUMMINGS JH, STEPHEN AM. Carbohydrate terminology and classification[J]. European Journal of Clinical Nutrition, 2007,61(S1):S5-S18. [4] CHEN L, GAO LX, HUANG QH, et al. Viscous and fermentable nonstarch polysaccharides affect intestinal nutrient and energy flow and hindgut fermentation in growing pigs[J]. Journal of Animal Science, 2017, 95(11):5054-5063. [5] 钟儒清, 白国松, 孙越, 等. 碳水化合物酶组方优化与猪饲料的精准高效利用[J]. 猪业科学, 2022, 39(7):46-49. ZHONG RQ, BAI GS, SUN Y, et al. Optimization of carbohydrase formulation and precise and efficient utilization of pig feed[J]. Swine Industry Science, 2022, 39(7):46-49. [6] HOQUE MR, KIM IH. Effect of non-starch polysaccharide enzyme supplementation with gradually reduced energy diet on growth performance, nutrient digestibility, lean meat percentage and backfat thickness of growing pigs[J]. Journal of Animal Physiology And Animal Nutrition(Berl), 2023, 107(2):574-580. [7] ?WI?TKIEWICZ M, HANCZAKOWSKA E, OLSZEWSKA A. Effect of corn distillers dried grains with solubles (DDGS) in diets with NSP-hydrolyzing enzymes on growth performance, carcass traits and meat quality of pigs[J]. Annals of Animal Science, 2013, 13(2):313-326. [8] ZHANG JZ, GAO Y, LU QP, et al. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes[J]. Journal of Zhejiang University. Science. B, 2015, 16(6):465-478. [9] SMIT MN, ZHOU X, LANDERO JL, et al. Increasing hybrid rye level substituting wheat grain with or without enzyme on growth performance and carcass traits of growing-finishing barrows and gilts[J]. Translational Animal Science, 2019, 3(4):1561-1574. [10] 高理想. 猪饲粮非淀粉多糖酶谱仿生优化方法的研究[D]. 北京: 中国农业科学院, 2016. GAO LX. Study on the bionic in vitro method to optimize the non-starch polysaccharide enzyme spectrum in the swine diets[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. [11] GAO LX, CHEN L, HUANG Q, et al. Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs[J]. Livestock Science, 2015, 174:53-58. [12] ZHONG RQ, GAO LX, ZHANG LL, et al. Effects of optimal carbohydrases cocktails screened using an in vitro method on nutrient and energy digestibility of different fiber source diets fed to growing pigs[J]. Animal Feed Science and Technology, 2021, 271:114728. [13] BALASUBRAMANIAN B, PARK JH, SHANMUGAM S, et al. Influences of enzyme blend supplementation on growth performance, nutrient digestibility, fecal microbiota and meat-quality in grower-finisher pigs[J]. Animals(Basel), 2020,10(3):386. [14] TORRES-PITARCH A, MCCORMACK UM, BEATTIE VE, et al. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs[J]. Livestock Science, 2018, 216:94-99. [15] KPOGO LA, JOSE J, AGYEKUM AK, et al. Performance of growing pigs fed wheat-based diets containing wheat millrun and a multi-carbohydrase enzyme[J]. Journal of Animal Science, 2019, 97:75-76. [16] LI Q, GABLER NK, LOVING CL, et al. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets[J]. Journal of Animal Science, 2018, 96(12):5233-5243. [17] OWUSU-ASIEDU A, SIMMINS PH, BRUFAU J, et al. Effect of xylanase and β-glucanase on growth performance and nutrient digestibility in piglets fed wheat–barley-based diets[J]. Livestock Science, 2010, 134(1):76-78. [18] SINGH AK, TIWARI UP, BERROCOSO JD, et al. Effects of a combination of xylanase, amylase and protease, and probiotics on major nutrients including amino acids and non-starch polysaccharides utilization in broilers fed different level of fibers[J]. Poulty Science, 2019, 98(11):5571-5581. [19] LIU F, LI J, NI H, et al. The effects of phytase and non-starch polysaccharide-hydrolyzing enzymes on trace element deposition, intestinal morphology, and cecal microbiota of growing-finishing pigs[J]. Animals (Basel), 2023, 13(4):549. [20] MUSSATTO SI, MANCILHA IM. Non-digestible oligosaccharides: a review[J]. Carbohydrate Polymers, 2007, 68(3):587-597. [21] TENG PY, KIM WK. Review: roles of prebiotics in intestinal ecosystem of broilers[J]. Frontiers in Veterinary Science, 2018, 5:245. [22] PANG J, ZHOU X, YE H, et al. The high level of xylooligosaccharides improves growth performance in weaned piglets by increasing antioxidant activity, enhancing immune function, and modulating gut microbiota[J]. Frontiers in Nutrition, 2021, 8:764556. [23] KWAK M, KIM J, SUNG K, et al. Effects of dietary non-starch polysaccharide (NSP) and NSP-degrading enzyme complex(Endo-PowerTM) supplementation on growth performance, intestinal environments and systemic immune responses in growing pigs[J]. Journal of Animal Science, 2018, 96:487-488. [24] LEWIS SM, WILLIAMS A, EISENBARTH SC. Structure and function of the immune system in the spleen[J]. Science Immunology, 2019, 4(33):eaau6085. [25] CRAIG AD, BEDFORD MR, HASTIE P, et al. The effect of carbohydrases or prebiotic oligosaccharides on growth performance, nutrient utilisation and development of small intestine and immune organs in broilers fed nutrient-adequate diets based on either wheat or barley[J]. Journal of the Science of Food and Agriculture, 2019, 99(7):3246-3254. [26] 施松善, 王顺春. 多糖生物活性研究进展[J]. 生命科学, 2011, 23(7):662-670. SHI SX, WANG SC. Bioactivities of polysaccharides[J]. Chinese Bulletin of Life Sciences, 2011, 23(7):662-670. [27] HO H, JOVANOVSKI E, ZURBAU A, et al. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B[J]. American Journal of Clinical Nutrition, 2017, 105(5):1239-1247. [28] KINH V, VASANTHAKUMARI BL, SUGUMAR C, et al. Effect of a combination of lysolecithin, synthetic emulsifier and monoglycerides on the apparent ileal digestibility, metabolizable energy and growth performance of growing pigs[J]. Animals (Basel), 2022,13(1):88. [29] KARAU A, GRAYSON I. Amino acids in human and animal nutrition[J]. Advances in Biochemical Engineering/Biotechnology, 2014, 143:189-228. [30] MA X, YU M, LIU Z, et al. Effect of amino acids and their derivatives on meat quality of finishing pigs[J]. Journal of Food Science and Technology, 2020, 57(2):404-412. [31] 沈雨佳, 陆利霞, 林丽军, 等. 酶解鲫鱼肉制取呈味氨基酸研究[J]. 中国调味品, 2015, 40(1):27-31. SHEN YJ, LU LX, LIN LJ, et al. Study on preparation of flavor amino acids by enzymolysis of crucian carp meat[J]. China Condiment, 2015, 40(1):27-31. [32] WANG JP, HONG SM, YAN L, et al. Effects of single or carbohydrases cocktail in low-nutrient-density diets on growth performance, nutrient digestibility, blood characteristics, and carcass traits in growing-finishing pigs[J]. Livestock Science, 2009, 1(3):215-220.
[1] 李雨菁,郝瑞荣. 葡萄籽原花青素对不同生长阶段猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 19-24.
[2] 赵勤辉,许婷婷,刘家,汤海鸥. 复合营养性膏剂对新生仔猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 25-31.
[3] 李玉莲,何炯斌,谭红,刘伟,李朝晖,董杏林. 植物甾醇饲喂育肥猪效果研究及经济效益分析[J]. 中国猪业, 2023, 18(6): 46-49,52.
[4] 高艳霞. 苍术提取物对仔猪生长性能的影响[J]. 中国猪业, 2023, 18(6): 70-72.
[5] 杨瑢. 2023年前三季度猪肉市场分析及展望[J]. 中国猪业, 2023, 18(5): 30-33.
[6] 刘梅. 不同水平纳米硒对母猪繁殖性能及仔猪生长性能的影响[J]. 中国猪业, 2023, 18(5): 40-43.
[7] 梁耿, 谭德强. 发酵桑叶对育肥猪生长性能的影响[J]. 中国猪业, 2023, 18(5): 48-51.
[8] 宋鑫伟. 不同添加量的复合有机酸对仔猪养分表观消化率的影响[J]. 中国猪业, 2023, 18(5): 52-54.
[9] 杜海涛. 不同缬氨酸添加量对哺乳母猪生产性能的影响[J]. 中国猪业, 2023, 18(5): 59-62,66.
[10] 刘春莉,张永河,刘雨滢. 猪品种间的生长性能、繁殖性能与肉质特点比较[J]. 中国猪业, 2023, 18(4): 31-34.
[11] 程忠,夏新良,凌家先. 麻城黑猪主要生产性能的观测[J]. 中国猪业, 2023, 18(4): 38-41.
[12] 杜海涛. 日粮中添加甜菜碱对育肥猪生长性能、胴体品质和血清生化指标的影响[J]. 中国猪业, 2023, 18(4): 66-71.
[13] 朱金清,张士海,孟克杰,王以君,陶士东,张宏雨,崔艳,张寅屏,车越. 环境改良剂对断奶仔猪生长性能及舍内氨气浓度的影响[J]. 中国猪业, 2023, 18(4): 113-116.
[14] 戴久丽,贾惠言,周潇,宋佳巍,冯景松,娄浙赟,王永存,陈淑芳. 臭氧净化空气技术对生猪生长性能和经济效益影响的研究[J]. 中国猪业, 2023, 18(3): 85-89.
[15] 毛昌发,肖丽萍,赖水明,张婷,赵鑫,吴有林,丁能水. 酵母培养物在猪生产上的应用[J]. 中国猪业, 2023, 18(1): 47-50,53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!