中国猪业 ›› 2024, Vol. 19 ›› Issue (1): 11-18.doi: 10.16174/j.issn.1673-4645.2024.01.002
李敬,毕庆悦,金英海,蒋显仁,李习龙
摘要: 25-羟基维生素D3(25-0H-D3),又称25-羟胆钙化醇和钙二醇,是维生素D3的活性形式,也是维生素D3在血液循环中的主要存在形式。目前,大量研究发现,与维生素D3相比,25-0H-D3有更高的生物学效价,尤其在动物处于应激环境、氧化损伤或肝功能受损时,在饲粮中添加25-0H-D3能够改善动物生产性能,促进骨骼发育,提高机体免疫能力以及缓解动物氧化应激等。因此,本文对25-0H-D3的代谢特性、效应机制、生物学功能以及在猪、禽生产中的应用进行了综述,以期为25-0H-D3在动物机体中的作用机制研究以及猪禽生产中的推广和应用提供理论指导和参考依据。
[1] 符璐, 苗健, 张国华, 等. 维生素D调控动物脂肪形成及脂肪组织代谢的研究进展[J]. 动物营养学报, 2023, 35(9):5545-5554. Fu L, Miao J, Zhang GH, et al. Research advances in regulation of animal adipogenesis and adipose tissue metabolism by vitamin D3[J]. Chinese Journal of Animal Nutrition, 2023, 35(9):5545-5554. [2] Tian XQ, Chen TC, Matsuoka LY, et al. Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin[J]. The Journal of biological chemistry, 1993, 268(20):14888-14892. [3] Holick MF. Vitamin D status: measurement, interpretation, and clinical application[J]. Annals of epidemiology, 2009, 19(2):73-78. [4] Holick MF, Chen TC, Lu Z, et al. Vitamin D and skin physiology: a D-lightful story[J]. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 2007, 22(2):28-33. [5] Christakos S, Ajibade DV, Dhawan P, et al. Vitamin D: metabolism. Rheumatic Disease Clinics, 2012, 38(1):1-11. [6] Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism[J]. International journal of molecular sciences, 2020, 21(18):6573. [7] Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects[J]. Physiological reviews, 2016, 96(1):365-408. [8] 王青. 25-羟基维生素D3对不同阶段妊娠母猪及仔猪体液免疫和生产性能的影响[D]. 重庆: 西南大学, 2023. Wang Q. Effects of 25-hydroxyvitamin D3 on humoralimmunity and production performance indifferent gestation stages of sows and piglets[D]. Chongqing: Southwest University, 2023. [9] Vranken L, Fontaine C, Souberbielle JC, et al. 24,25-dihydroxyvitamin D: a new biomarker in non-parathyroid hypercalcemia diagnosis[J]. In Clinical Laboratory International, 2018(42):23-25. [10] Jones G. Metabolism and biomarkers of vitamin D[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2012(243):7-13. [11] Marcinkowska E. A run for a membrane vitamin D receptor[J]. Biological signals and receptors, 2001, 10(6):341-349. [12] Xiaoyu Z, Payal B, Melissa O, et al. 1alpha,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival[J]. The Journal of steroid biochemistry and molecular biology, 2007, 103(3-5):457-461. [13] Finch JL, Brown AJ, Slatopolsky E. Differential effects of 1,25-dihydroxy-vitamin D3 and 19-nor-1,25-dihydroxy-vitamin D2 on calcium and phosphorus resorption in bone[J]. Journal of the American Society of Nephrology, 1999, 10(5):980-985. [14] Protiva P, Pendyala S, Nelson C, et al. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial[J]. American Journal of Clinical Nutrition, 2016, 103(5):1224-1231. [15] Asano L, Watanabe M, Ryoden Y, et al. Vitamin D metabolite, 25-Hydroxyvitamin D, regulates lipid metabolism by Inducing degradation of SREBP/SCAP[J]. Cell Chemical Biology, 2017(24), 207-217. [16] Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism[J]. International Journal of Molecular Sciences, 2020, 21(18):6573. [17] Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes?[J]. Experimental Dermatology, 2020(29):876–884. [18] Olszewska AM, Nowak JI, Myszczynski K, et al. Dissection of an impact of VDR and RXRA on the genomic activity of 1,25-(OH)2-D3 in A431 squamous cell carcinoma[J]. Molecular and Cellular Endocrinology, 2024(582):112-124. [19] Jakobsen J, Maribo H, Bysted A, et al. 25-hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs-but the meat produced has a lower content of vitamin D[J]. British Journal of Nutrition, 2007, 98(5):908-913. [20] Haussler MR, Whitfield GK, Kaneko I, et al. Molecular mechanisms of vitamin D action[J]. Calcified Tissue International, 2013, 92(2):77-98. [21] Adler CP, Bredlein F, Limberg J, et al. Rickets caused by vitamin D deficiency[J]. Die Medizinische Welt, 1979, 30(4):141. [22] Lips P, Schoor NM. The effect of vitamin D on bone and osteoporosis[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2011, 25(4):585-591. [23] 田程程, 张晶, 符璐, 等. 1,25(OH)2D3通过调节氧化还原状态影响猪前体脂肪细胞分化[J]. 甘肃畜牧兽医, 2022, 52(4):35-40. Tian CC, Zhang J, Fu L, et al. 1,25(OH)2D3 affects porcine preadipocyte differentiation by regulating redox state[J]. Gansu Animal Husbandry and Veterinary, 2022, 52(4):35-40. [24] 岳小婧, 张晶, 马姝雯, 等. 1,25(OH)2D3以双向方式影响猪前体脂肪细胞增殖分化的研究[J]. 中国畜牧兽医, 2021, 48(7):2349-2357. Yue XJ, Zhang J, Ma SW, et al. 1,25(OH)2D3 affects proliferation and differentiationof porcine preadipocytes in a biphasic manner[J]. Chinese Animal Husbandry and Veterinary Medicine, 2021, 48(7):2349-2357. [25] B?ckesj? CM, Li Y, Lindgren U, et al. Activation of Sirtl decreases adipocyte formation during ostcoblast differentiation of mesenchymal stem cells[J]. Journal of Bone and Mineral Research, 2006, 21(7):993-1002. [26] 张尧, 李晓莉, 张岩. 维生素D对骨髓基质干细胞成骨分化的分子调控研究进展[J]. 中国药理学通报, 2016, 32(10):1337-1340. Zhang Y, Li XL, Zhang Y, et al. Research progress on molecular regulatory effects of vitamin D on osteogenic differentiation of bone marrow stromal cells[J]. Chinese Pharmacological Bulletin, 2016, 32(10):1337-1340. [27] 关晓慧, 王君, 郭菲, 等. 1,25-二羟基维生素D3抑制脂肪细胞分化作用的研究[J]. 天津医药, 2013, 41(10):981-984. Guan XH, Wang J, Guo F, et al. Inhibitory effects of 1,25-dihydroxy-vitamin D3 on differentiation of adipocytes[J]. Tianjin Medical Journal, 2013, 41(10):981-984. [28] Boyan BD, Chen J, Schwartz Z. Mechanism of Pdia3-dependent 1α,25- dihydroxy vitamin D3 signaling in musculoskeletal cells[J]. Steroids, 2012, 77(10):892-896. [29] Hu R, Li L, Liang L, et al. 25(OH)D3 improves granulosa cell proliferation and IVF pregnancy outcomes in patients with endometriosis by increasing G2M+S phase cells[J]. Reproductive Biology and Endocrinology, 2023, 21(1):115. [30] Casteels K, Bouillon R, Waer M, et al. Immunomodulatory effects of 1,25-dihydroxyvitamin D3[J]. Current Opinion in Nephrology and Hypertension, 1995(4):313-318. [31] Lemire JM. Immunomodulatory role of 1,25-dihydroxyvitamin D3[J]. Journal of Cellular Biochemistry, 1992(49):26–31. [32] Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, hormone, and immunomodulator[J]. Nutrients, 2018, 10(11):1656. [33] Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. International Journal of Molecular Sciences. 2020 ,21(18):6573. [34] Bouillon R, Bikle D. Vitamin D Metabolism Revised: Fall of Dogmas[J]. Journal of Bone and Mineral Research, 2019(34):1985-1992. [35] Miao D, Goltzman D. Mechanisms of action of vitamin D in delaying aging and preventing disease by inhibiting oxidative stress[J]. Vitamins and Hormones, 2023(121):293-318. [36] He J, Wang H, Shi J, et al. 1,25-Dihydroxyvitamin D deficiency accelerates male reproductive senescence in aging mice and 1,25(OH)2D3 alleviates oxidative stress via NF-κB/SOD[J]. American Journal of physiology Endocrinology and metabolism, 2021, 320(4):E732-E746. [37] Chen G, Zhang Y, Yu S, et al, Miao D: Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress[J]. Stem cells, 2019, 37(9):1200-1211. [38] Sun W, Qiao W, Zhou B, et al. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition [J]. Metabolism, 2018(88):61-71. [39] Chen H, Hu X, Yang R, et al. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)2D deficiency[J]. International Journal of Biological Sciences, 2020, 16(14):2712-2726. [40] Chen L, Yang R, Qiao W, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling[J]. Aging cell, 2019, 18(3):e12951. [41] Sun J, Zhong W, Gu Y, et al. 1,25-(OH)2-D3 suppresses COX-2 up-regulation and thromboxane production in placental trophoblast cells in response to hypoxic stimulation[J]. Placenta, 2014, 35(2):143-145. [42] Xu J, Jia X, Gu Y, et al. Vitamin D Reduces Oxidative Stress-Induced Procaspase-3/ROCK1 Activation and MP Release by Placental Trophoblasts[J]. Journal of Clinical Endocrinology & Metabolism, 2017, 102(6):2100-2110. [43] Codo?er-Franch P, Tavárez-Alonso S, Simó-Jordá R, et al. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children[J]. Journal of Pediatrics, 2012, 161(5):848–854. [44] Anandabaskar N, Selvarajan S, Dkhar SA, et al. Effect of vitamin D supplementation on vascular functions and oxidative stress in type 2 Diabetic patients with vitamin D Deficiency[J]. Indian Journal of Endocrinology & Metabolism, 2017, 21(4):555–563. [45] Zhan D, Zhao J, Shi Q, et al. 25-hydroxyvitamin D3 inhibits oxidative stress and ferroptosis in retinal microvascular endothelial cells induced by high glucose through down-regulation of miR-93[J]. BMC Ophthalmol, 2023, 23(1):22. [46] 张连华. 25-羟基维生素D3对猪生产性能、肠道健康和骨品质的研究[D]. 北京: 中国农业大学, 2021. Zhang LH. Studies on 25-hydroxyvitamin D3 on pig performance, intestinal health and bone quality[D]. Beijing: China Agricultural University, 2021. [47] Upadhaya SD, Jung YJ, Kim YM, et al. Effects of dietary supplementation with 25-OH-D3 during gestation and lactation on reproduction, sow characteristics and piglet performance to weaning 25-hydroxyvitamin D3 in sows[J]. Animal Feed Science and Technology, 2021(271-):271. [48] Thayer MT, Nelssen JL, Langemeier AJ, et al. PSVII-14 The effects of maternal dietary supplementation of cholecalciferol (vitamin D3) and 25(OH)D3 on progeny muscle fiber measures[J]. Journal of Animal Science, 2019, 97(2):218. [49] Zhang L, Hu J, Li M. et al. Maternal 25-hydroxycholecalciferol during lactation improves intestinal calcium absorption and bone properties in sow-suckling piglet pairs[J]. Journal of Bone and Mineral Metabolism, 2019(37):1083-1094. [50] Zhou X, Zou Y, Xu Y, et al. Dietary Supplementation of 25-Hydroxyvitamin D3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets[J]. Antioxidants (Basel). 2022, 11(9):1750. [51] Zhang L, Yang M, Piao X. Effects of 25-hydroxyvitamin D3 on growth performance, serum parameters, fecal microbiota, and metabolites in weaned piglets fed diets with low calcium and phosphorus.[J]. Journal of the Science of Food and Agriculture, 2022(102): 597-606. [52] Yang J, Tian G, Chen D, et al. Dietary 25-Hydroxyvitamin D3 Supplementation Alleviates Porcine Epidemic Diarrhea Virus Infection by Improving Intestinal Structure and Immune Response in Weaned Pigs[J]. Animals(Basel), 2019, 9(9):627. [53] Von Rosenberg SJ, Weber GM, Erhardt A, et al. Tolerance evaluation of overdosed dietary levels of 25-hydroxyvitamin D3 in growing piglets[J]. Journal of Animal Physiology and Animal Nutrition(Berl), 2016, 100(2):371-380. [54] 瞿红侠, 王建国, 陈冠华, 等. 肉鸡日粮中25-羟基维生素D3与维生素D3生物学效价比较[J]. 中国饲料, 2015(20):25-28,32. Qu HX, Wang JG, Chen GH, et al. Comparison of biological potency of 25-hydroxyvitamin D3 and vitamin D3 in broiler diets[J]. China Feed, 2015(20):25-28,32. [55] 何蕾, 段延民, 张宁, 等. 25-羟基维生素D3对肉鸡生长性能、骨骼发育及小肠磷转运蛋白基因表达的影响[J]. 家畜生态学报, 2023, 44(11):24-28. He L, Duan YM, Zhang N, et al. Effects of 25-hydroxycholecalciferol on growth performance, bone development and phosphate tiansporter gene expressions in the small intestine of broiler chickens[J]. Journal of Domestic Animal Ecology, 2023, 44(11):24-28. [56] 张金龙, 张宁, 杨雪, 等. 25-羟基维生素D3对肉鸡生长性能、骨骼矿化及肠道维生素D受体基因表达的影响[J]. 中国饲料, 2017(24):24-29. Zhang JL, Zhang N, Yang X, et al. Effects of 25-hydroxyvitamin D3 on growth performance, bone mineralization and intestinal vitamin D receptor gene expression in broiler chickens[J]. China Feed, 2017(24):24-29. [57] Abascal-Ponciano GA, Leiva SF, Flees JJ, et al. Dietary 25-Hydroxyvitamin D3 Supplementation Modulates Intestinal Cytokines in Young Broiler Chickens[J]. Frontiers in Veterinary Science, 2022(9):947276. [58] Vazquez JR, Gómez GV, López CC, et al. Effects of 25-hydroxycholecalciferol with two D3 vitamin levels on production and immunity parameters in broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2018(102): e493–e497. [59] Adhikari R, White D, House JD, et al. Effects of additional dosage of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3 on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens[J]. Poultry Science, 2020, 99(1): 364-373. [60] Chen C, Turner B, Applegate TJ, et al. Role of long-term supplementation of 25-hydroxyvitamin D3 on laying hen bone 3-dimensional structural development[J]. Poultry Science, 2020, 99(11):5771-5782. [61] Chen C, Turner B, Applegate TJ, et al. Role of long-term supplementation of 25-hydroxyvitamin D3 on egg production and egg quality of laying hen[J]. Poultry Science, 2020, 99(12):6899-6906. [62] Jing X, Wang Y, Song F, et al. A Comparison between Vitamin D3 and 25-Hydroxyvitamin D3 on Laying Performance, Eggshell Quality and Ultrastructure, and Plasma Calcium Levels in Late Period Laying Hens[J]. Animals(Basel), 2022(12):2824. |
[1] | 张雯韬,马思奇,向鸿坤,贺建华,伍树松. 地方猪品种改良及营养调控研究进展[J]. 中国猪业, 2024, 19(2): 3-14. |
[2] | 段玖均,刘金阳,王在贵,张顺芬,张立兰,王阳,陈亮,钟儒清. 非淀粉多糖酶组合对苏淮猪生长性能和肌肉风味氨基酸含量的影响[J]. 中国猪业, 2024, 19(2): 15-23. |
[3] | 李江凌, 张金灵, 陈晓晖, 王秋实, 赵素君, 刘锐, 吕学斌, 王宇萍, 龚建军, 何志平. 长白猪和藏猪在不同日龄、种间的代谢物差异分析[J]. 中国猪业, 2024, 19(2): 24-34. |
[4] | 王佳昊,王月,吴添文,王彦芳. 基因组编辑技术加速猪育种进程[J]. 中国猪业, 2024, 19(2): 35-42. |
[5] | 张丰霞,杨德威,崔茂盛,李千军,闫峻,旦智草. 蕨麻猪产仔性状全基因组关联分析[J]. 中国猪业, 2024, 19(2): 43-51. |
[6] | 郭建凤. 性别对五莲黑猪胴体性能及肉品质的影响比较[J]. 中国猪业, 2024, 19(2): 52-58. |
[7] | 李金海,李兴玉. 我国猪蓝耳病NADC34-like毒株的流行病学及致病性研究进展[J]. 中国猪业, 2024, 19(2): 59-66. |
[8] | 阳红莲,何玉华,朱玲,徐志文. 藏香猪流行性腹泻病毒的PCR检测及毒株分型[J]. 中国猪业, 2024, 19(2): 67-73. |
[9] | 王学敏,廖超,涂枫,李碧侠,徐小波,付言峰. 规模化猪场粪污处理利用现状及案例分析[J]. 中国猪业, 2024, 19(2): 74-81. |
[10] | 刘洋,乌云花. 不同规模生猪养殖成本收益分析——以山东省为例[J]. 中国猪业, 2024, 19(2): 82-94. |
[11] | 袁俊伟. “上市猪企”股权激励与扩产行为比较分析[J]. 中国猪业, 2024, 19(2): 95-102. |
[12] | 周业勋, 李凯, 钟发刚, 张宏福. 开发油莎豆新型饲料资源大有潜力[J]. 中国猪业, 2024, 19(1): 3-10. |
[13] | 李雨菁,郝瑞荣. 葡萄籽原花青素对不同生长阶段猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 19-24. |
[14] | 赵勤辉,许婷婷,刘家,汤海鸥. 复合营养性膏剂对新生仔猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 25-31. |
[15] | 黄志洋,淡海锋,沈林園,朱砺,甘麦邻. 常见商业化猪精子计数板使用效果与测试分析[J]. 中国猪业, 2024, 19(1): 32-38. |
|