中国猪业 ›› 2024, Vol. 19 ›› Issue (3): 5-14.doi: 10.16174/j.issn.1673-4645.2024.03.001

• 专题报道 • 上一篇    下一篇

机器学习在猪遗传育种中的应用与展望

胡伟,唐中林   

  • 出版日期:2024-07-15 发布日期:2024-06-25

  • Online:2024-07-15 Published:2024-06-25

摘要: 摘要:随着海量育种信息的快速积累,机器学习作为人工智能的重要分支,在猪等畜禽育种中将扮演更加重要的角色。如何利用机器学习实现高效精准智能化育种是科技工作者当前亟需解决的热点与难点问题。本文从常用算法及分类等方面对机器学习进行了概述,并进一步对机器学习在个体识别尧表型获取尧遗传评估等动物育种核心环节的应用展开综述,同时指出智能化育种中存在的一些问题并提出相关建议,以期为大数据背景下利用机器学习对猪及其他动物育种的研究与应用提供参考。

关键词: 猪, 机器学习, 育种, 表型测定, 遗传评估

中图分类号:  S828;S813.1

[1] SARKER IH, HOQUE MM, UDDIN MK, et al. Mobile data science and intelligent apps: concepts, AI-based modeling and research directions [J]. Mobile Networks and Applications, 2021, 26(1):285-303. [2] 胡林, 刘婷婷, 李欢, 等. 机器学习及其在农业中应用研究的展望[J]. 农业图书情报, 2019, 31(10): 12-22. HU L, LIU TT, LI H, et al. Prospects for machine learning research and its application in agriculture [J]. Agricultural Library and Information, 2019, 31(10):12-22. [3] JORDAN MI, MITCHELL TM. Machine learning: trends, perspectives, and prospects[J]. Science,2015, 349(6245):255-260. [4] SARKER IH, KAYES ASM, BADSHA S, et al. Cybersecurity data science: an overview from machine learning perspective[J]. Journal of Big Data, 2020, 7(1):41. [5] DHALL D, KAUR R, JUNEJA M. Machine learning: a review of the algorithms and its applicationgs[C]//Singh P, KAR A, SINGH Y, et al. Proceedings of ICRIC 2019. Cham: Springer, 2020. [6] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research [J]. 2020, 9 (1):381-386. [7] SARKER IH. Machine learning: algorithms, real-world applications and research directions [J]. SN Computer Science, 2021, 2(3):160. [8] CHARBUTY B, ABDULAZEEZ A. Classification based on decision tree algorithm for machine learning [J]. Journal of Applied Science and Technology Trends, 2021, 2(1):20-28. [9] BRODLEY CE, UTGOFF PE. Multivariate decision trees [J]. Machine Learning, 1995, 19(1):45-77. [10] TSO GKF, YAU KKW. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks[J]. Energy, 2007, 32(9):1761-1768. [11] LOH WY. Fifty years of classification and regression trees[J]. International Statistical Review, 2014, 82(3):329-348. [12] COLLINS M. The naive Bayes model, maximum-likelihood estimation, and the EM algorithm[J]. Lecture Notes, 2012(6):97-111. [13] LOWD D, DOMINGOS P. Naive Bayes models for probability estimation [C]//Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005:529-536. [14] BHAVSAR H, PANCHAL M. A review on support vector machine for data classification[J]. International Journal of Advanced Research in Computer Engineering & Technology, 2012, 1(10):185-189. [15] KODINARIYA TM, MAKWANA PR. Review on determining number of cluster in K-Means clustering [J]. International Journal, 2013, 1(6):90-95. [16] SINAGA KP, YANG MS. Unsupervised K-means clustering algorithm[J]. IEEE Access, 2020, 8:80716-80727. [17] RINGNER M. What is principal component analysis?[J]. Nature Biotechnology, 2008, 26:303-304. [18] JOACHIMS T. Transductive inference for text classification using support vector machines [C]// Sixteenth International Conference on 1999. Morgan Kaufmann Publishers Inc., San Francisco. 1999. [19] ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised self-training of object detection models [C]//2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1. Piscataway, New Jersey: IEEE, 2005. [20] PADMANABHA REDDY YA, VISWANATH P, ESWARA REDDY B. Semi-supervised learning: a brief review [J]. International Journal of Engineering & Technology, 2018, 7(1-8):81. [21] HANSEN LK, SALAMON P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001. [22] 徐继伟, 杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6):1082-1092. XU JW, YANG Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition),2018, 40(6):1082-1092. [23] 杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40. YANG JF, QIAO PR, LI YM, et al. A review of machine-learningclassification and algorithms [J]. Statistics & decision,2019, 35(6):36-40. [24] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996,24(2):123-140. [25] BREIMAN L. Random forests [J]. Machine Learning, 2001,45:5-32. [26] FREUND Y, SCHAPIRE R, ABE N. A short introduction to boosting [J]. Journal-Japanese Society For Artificial Intelligence, 1999, 14(771-780):1612. [27] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. [28] PAN SJ, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [29] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1):1-19. HU Y, LUO DY, HUA K, et al. Overview on deep learning[J].CAAI Transactions on Intelligent Systems, 2019, 14(1):1-19. [30] LI ZW, LIU F, YANG WJ, et al. A survey of convolutional neural networks: analysis, applications, and prospects [J].IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12):6999-7019. [31] O'SHEA K, NASH R. An introduction to convolutional neural networks[J]. ArXiv Preprint ArXiv:1511.08458, 2015. [32] GU JX, WANG ZH, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377. [33] LIPTON ZC, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning [J]. Computer Science, 2015. doi:10.48550/arXiv.1506.00019. [34] VAN HOUDT G, MOSQUERA C, NAPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8):5929-5955. [35] SCHUSTER M, PALIWAL KK. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [36] GOODFELLOW IJ, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2014:2672-2680. [37] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1):53-65. [38] WANG KF, GOU C, DUAN YJ, et al. Generative adversarial networks: introduction and outlook[J]. CAA Journal of Automatica Sinica, 2017, 4(4):588-598. [39] WADA N, SHINYA M, SHIRAISHI M. Short paper pig face recognition using eigenspace method[J]. ITE Transactions on Media Technology and Applications, 2013, 1 (4):328-332. [40] HANSEN MF, SMITH ML, SMITH LN, et al. Towards on-farm pig face recognition using convolutional neural networks[J]. Computers in Industry, 2018, 98:145-152. [41] 张建龙, 周康, 庄晏榕, 等. 育肥猪生长过程中脸部变化对识别模型准确率的影响[J]. 中国农业大学学报, 2021, 26(6):180-186. ZHANG JL, ZHOU K, ZHUANG YR, et al. Effect of facial changes on the accuracy of the recognition model during the growth of finishing pigs[J]. Journal of China Agricultural University, 2021, 26(6):180-186. [42] SCHOFIELD CP. Evaluation of image analysis as a means of estimating the weight of pigs [J]. Journal of Agricultural Engineering Research, 1990, 47: 287-296. [43] SCHOFIELD CP, MARCHANT JA, WHITE RP, et al. Monitoring pig growth using a prototype imaging system[J]. Journal of Agricultural Engineering Research, 1999, 72(3):205-210. [44] WANG Y, YANG W, WINTER P, et al. Non-contact sensing of hog weights by machine vision[J]. Applied Engineering in Agriculture, 2006, 22(4):577-582. [45] WANG YS, YANG W, WALKER L, et al. Enhancing the accuracy of area extraction in machine vision-based pig weighing through edge detection[J]. International Journal of Agricultural and Biological Engineering, 2008, 1(1):37-42. [46] 杨艳, 滕光辉, 李保明. 利用二维数字图像估算种猪体重[J]. 中国农业大学学报, 2006, 11(3):61-64. YANG Y, TENG GH, LI BM. Determination of pig weight from 2D images[J]. Journal of China Agricultural University, 2006,11(3):61-64. [47] 刘同海. 基于双目视觉的猪体体尺参数提取算法优化及三维重构[D]. 北京: 中国农业大学, 2014. LIU TH. Study of pig’s body size parameter extraction algorithm optimization and three-dimensional reconstruction based-on binocular stereo vision[D]. Beijing: China Agricultural University, 2014. [48] 李卓. 基于立体视觉技术的生猪体重估测研究[D]. 北京: 中国农业大学, 2016. LI Z. Research of pig weight estimation based on stereo vision technology [D]. Beijing: China Agricultural University, 2016. [49] SHI S, YIN L, LIANG SH, et al. Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras[J]. Computers and Electronics in Agriculture, 2020, 175:105543. [50] 王小品. 基于深度学习的多目标生猪的体尺关键点定位方法研究[D]. 武汉: 华中农业大学, 2023. WANG XP. Research on the key point location method of multi-objective pig body size based on deep learning [D]. Wuhan: Huazhong Agricultural University, 2023. [51] YU MY, ZHENG HY, XU DH, et al. Non-contact detection method of pregnant sows backfat thickness based on two-dimensional images [J]. Animal Genetics, 2022, 53(6):769-781. [52] LIU Z, DU H, LAO FD, et al. PIMFP: an accurate tool for the prediction of intramuscular fat percentage in live pigs using ultrasound images based on deep learning [J]. Computers and Electronics in Agriculture, 2024, 217:108552. [53] 陈虹伶. 基于深度学习的猪B 超图像脂肪含量检测[D]. 重庆: 重庆理工大学, 2020. CHEN HL. Fat content detection of B-scan images of pigs based on deep learning[D]. Chongqing: Chongqing University of Technology, 2020. [54] 钱琴琴. 基于深度学习CT 影像组学的活体猪肌内脂评估方法研究[D]. 无锡: 江南大学, 2022. QIAN QQ. A deep-learning CT imaging-based imaging method for in vivo pig intramuscular fat assessment [D]. Wuxi: Jiangnan University, 2022. [55] HENDERSON CR. Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, 1975, 31(2):423-447. [56] LEGARRA A, CHRISTENSEN OF, AGUILAR I, et al. Single step, a general approach for genomic selection [J]. Livestock Science, 2014, 166:54-65. [57] TUSELL L, PEREZ-RODRIGUEZ P, FORNI S, et al. Genome-enabled methods for predicting litter size in pigs: a comparison[J]. Animal, 2013, 7(11):1739-1749. [58] WANG X, SHI SL, WANG GJ, et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. Journal of Animal Science and Biotechnology, 2022, 13(1):60. [59] 陈栋, 王书杰, 赵真坚, 等. 基于机器学习的猪生长性状基因组预测[J]. 遗传, 2023, 45(10):922-932. CHEN D, WANG SJ, ZHAO ZJ, et al. Genomic prediction of pig growth traits based on machine learning [J]. Hereditas(Beijing), 2023, 45(10):922-932. [60] 栗涛. 基于机器学习的猪育种表型预测及基因芯片位点筛选研究[D]. 武汉: 华中农业大学, 2023. LI T. Prediction of pig breeding phenotype and screening of gene chip loci based on machine learning[D]. Wuhan: Hua zhong Agricultural University, 2023. [61] SHI TF, PENG J. Factors affecting accuracy of genotype imputation using neural networks in deep learning [C]//Proceedings of the 2021 13th International Conference on Machine Learning and Computing. New York: ACM, 2021:33-40. [62] WANG ZS, LI WC, TANG ZL. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models1[J]. Journal of Integrative Agriculture, 2024. Doi: 10.1016/j.jia.2024.03.071. [63] MESSAD F, LOUVEAU I, KOFFI B, et al. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs[J]. BMC Genomics, 2019, 20(1):659. [64] PILES M, FERNANDEZ-LOZANO C, VELASCO-GALILEA M, et al. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs [J]. Genetics Selection Evolution, 2019, 51(1):10. [65] FLORES P, ZHANG Z. Wheat lodging ratio detection based on UAS imagery coupled with different machine learning and deep learning algorithms[J]. Smart Agriculture, 2021, 3(2):23-34.
[1] 岳健民,朱君,刘胤池,赵宇亮,贾楠,陈超,李斌. 猪舍智能作业机器人导航技术研究进展[J]. 中国猪业, 2024, 19(3): 15-23.
[2] 周昕,冯钧哲,徐杏,谢传奇,吴越,李向军,刘凯歌,楼喜中,王星博,周卫东. 猪舍环境精准控制模型及其优化算法[J]. 中国猪业, 2024, 19(3): 24-33.
[3] 周光亮,许源峰,杨慧,李新云,赵云翔,刘向东. 全产业链猪育种体系构建的研究进展[J]. 中国猪业, 2024, 19(3): 59-67.
[4] 郭宝港,王明凯,于世浩,张文娟,申小冉,曾勇庆,陈伟. 基于SNP和ROH的泰山黑猪群体遗传结构分析[J]. 中国猪业, 2024, 19(3): 68-76.
[5] 陆杰,李双智,张宝羽,张和军,申振才,钟萍,李秋月. 种猪生长性状校正公式研究[J]. 中国猪业, 2024, 19(3): 77-84.
[6] 卢晓芳,冉茂良. 胎次和配种季节对二元母猪繁殖性能的影响[J]. 中国猪业, 2024, 19(3): 85-92.
[7] 张雯韬, 马思奇, 向鸿坤, 贺建华, 伍树松. 地方猪品种改良及营养调控研究进展[J]. 中国猪业, 2024, 19(2): 3-14.
[8] 段玖均, 刘金阳, 王在贵, 张顺芬, 张立兰, 王阳, 陈亮, 钟儒清. 非淀粉多糖酶组合对苏淮猪生长性能和肌肉风味氨基酸含量的影响[J]. 中国猪业, 2024, 19(2): 15-23.
[9] 李江凌, 张金灵, 陈晓晖, 王秋实, 赵素君, 刘锐, 吕学斌, 王宇萍, 龚建军, 何志平. 长白猪和藏猪在不同日龄、种间的代谢物差异分析[J]. 中国猪业, 2024, 19(2): 24-34.
[10] 王佳昊, 王月, 吴添文, 王彦芳. 基因组编辑技术加速猪育种进程[J]. 中国猪业, 2024, 19(2): 35-42.
[11] 张丰霞,杨德威,崔茂盛,李千军,闫峻,旦智草. 蕨麻猪产仔性状全基因组关联分析[J]. 中国猪业, 2024, 19(2): 43-51.
[12] 郭建凤. 性别对五莲黑猪胴体性能及肉品质的影响比较[J]. 中国猪业, 2024, 19(2): 52-58.
[13] 李金海,李兴玉. 我国猪蓝耳病NADC34-like毒株的流行病学及致病性研究进展[J]. 中国猪业, 2024, 19(2): 59-66.
[14] 阳红莲,何玉华,朱玲,徐志文. 藏香猪流行性腹泻病毒的PCR检测及毒株分型[J]. 中国猪业, 2024, 19(2): 67-73.
[15] 王学敏,廖超,涂枫,李碧侠,徐小波,付言峰. 规模化猪场粪污处理利用现状及案例分析[J]. 中国猪业, 2024, 19(2): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!