China Swine Industry ›› 2021, Vol. 16 ›› Issue (4): 22-26.doi: 10.16174/j.issn.1673-4645.2021.04.004

• Genetic Breeding • Previous Articles     Next Articles

Utilization of Animal Heterosis and Its Prediction Methods

ZHU Bangqiang1, HE Jun1, ZENG Qinghua2, ZHANG Yuebo1,*   

  1. 1College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
    2Hunan Chuweixiang Agriculture and Animal Husbandry Co., Ltd., Ningxiang 410600, China
  • Received:2021-07-09 Online:2021-08-25 Published:2021-09-16

Abstract: Heterosis was widely applied in animal and plant crossbreeding because of its ability to improve the production performance, viability and resistance of the offspring produced by two parents with different genetic composition. The higher the utilization rate of heterosis, the higher the value is generated by breeding animals, and the greater the additional profit was generated by their offspring. Therefore, the utilization rate of heterosis was an important content which the majority of breeders pay more attention to. The evaluation of heterosis utilization rate depended on the prediction of heterosis of breeding stock. This article mainly reviewed the existing researches from the two aspects, heterosis utilization and heterosis prediction methods, and discussed methods for improving the accuracy of heterosis prediction, in order to provide certain reference and help for related research.

Key words: heterosis, theoretical hypothesis, prediction of heterosis, hybrid utilization rate

CLC Number: 

  • S828
[1] Birchler JA, Yao H, Chudalayandi S, et al.Heterosis[J]. The Plant Cell, 2010, 22(7):2105-2112.
[2] Herbst RH, Bar-Zvi D, Reikhav S, et al.Heterosis as a consequence of regulatory incompatibility[J]. BMC Biology, 2017,15(1). doi: 10.1186/s12915-017-0373-7.
[3] 钟金城. 活性基因效应假说[J]. 西南民族学院学报(自然科学版), 1994, 20(2):203-205.
[4] 李勇超, 宋书锋, 李建民. 杂种优势的分子机理研究进展[J]. 湖北农业科学, 2009, 48(6):1501-1504.
[5] 韩红梅. 马×驴杂交后代基因组结构特征研究[D]. 呼和浩特: 内蒙古大学, 2020.
[6] Proops L, Burden F, Osthaus B.Mule cognition: a case of hybrid vigour?[J]. Animal Cognition, 2009, 12(1):75-84.
[7] 高山. 基于转录组测序探究骡子杂种优势的遗传机制[D]. 杨凌: 西北农林科技大学, 2019.
[8] 昝林森, 王洪程, 梅楚刚, 等. 中国黄牛选育改良及杂种优势利用[J]. 中国牛业科学, 2015, 41(5):5-7,18.
[9] 范婷婷, 陈燕, 张路培, 等. 西门塔尔牛与我国地方黄牛的杂种优势预测分析[J]. 畜牧兽医学报, 2021, 52(3):653-661.
[10] 肖瑜. 宁乡猪全基因组重测序及其特异性标记筛选研究[D]. 长沙: 湖南农业大学, 2019.
[11] 宋粤湘, 高虎, 张跃博, 等. 宁乡猪及杜宁二元杂种猪的胴体与肉质性状测定[J]. 中国畜牧杂志, 2021, 57(4):68-72.
[12] 朱吉, 陈晨, 谢菊兰, 等. 宁乡猪杂交组合的胴体、肉质性状对比分析[J]. 养猪, 2021(2):41-45.
[13] Amuzu-Aweh EN, Bijma P, Kinghorn BP, et al.Prediction of heterosis using genome-wide SNP-marker data: application to egg production traits in white Leghorn crosses[J]. Heredity (Edinb), 2013, 111(6):530-538.
[14] 张丹阳, 张一鸣, 李丽娟, 等. 杂种优势的形成机制及其在动物遗传育种中的应用[J]. 基因组学与应用生物学, 2020, 39(1):104-108.
[15] 王淑新, 连林生. 畜禽杂种优势预测方法的研究进展[J]. 当代畜牧, 2008(1):39-42.
[16] Nei M.Estimation of average heterozygosity and genetic distance from as mall number of individuals[J]. Genetics, 1978, 89(3):583-590.
[17] Nei M, Roychoudhury AK.Sampling variances of heterozygosity and genetic distance[J]. Genetics, 1974, 76(2):379-390.
[18] Gram R, Pirchner F.Relation of genetic distance between cattle breeds and heterosis of resulting crosses[J]. Animal Blood Groups and Biochemical Genetics, 1984, 15(3):173-180.
[19] 李国治, 连林生, 鲁绍雄, 等. 猪血清蛋白多态性与杂种优势关系的探讨[J]. 中国畜牧杂志, 2004(3):32-34.
[20] 徐忠, 张哲, 孙浩, 等. 金华猪与杜洛克、长白猪、大白猪杂交的杂种优势预测[J]. 中国畜牧杂志, 2019, 55(1):64-67.
[21] Barker JS, Moore SS, Hetzel DJ, et al.Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci[J]. Animal Genetics, 1997, 28(2):103-115.
[22] 裴智勇, 赵蓓蓓. 动物杂种优势及其预测方法[J]. 中国畜牧兽医文摘, 2015, 31(3):45.
[23] Carillier C, Larroque H, Robert-GraniéC. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population[J]. Genetics Selection Evolution, 2014, 46(1):67.
[24] Karoui S, Carabano MJ, Diaz C, et al.Joint genomic evaluation of French dairy cattle breeds using multiple-trait models[J]. Genetics Selection Evolution, 2012, 44(1):16-24.
[25] Wientjes Y, Calus M, Duenk P, et al.Required properties for markers used to calculate unbiased estimates of the genetic correlation between populations[J]. Genetics Selection Evolution, 2018, 50(1):65.
[26] Duenk P, Bijma P, Wientjes Y, et al.Predicting the purebred-crossbred genetic correlation from the genetic variance components in the parental lines[J]. Genetics Selection Evolution, 2021, 53(1):10.
[27] 盛志廉, 陈瑶生. 数量遗传学[M]. 北京: 科学出版社, 1999.
[28] 朱军. 广义遗传模型与数量遗传分析新方法[J]. 浙江农业大学学报, 1994(6):551-559.
[29] 周发林, 杨其彬, 姜松, 等. 斑节对虾3个种质群体体质量性状配合力及杂种优势分析[J]. 南方水产科学, 2021, 17(1):39-44.
[30] Siwendu NA, Norris D, Ngambi JW, et al.Heterosis and combining ability for body weight in a diallel cross of three chicken genotypes[J]. Tropical Animal Health and Production, 2013, 45(4):965-970.
[31] 高玉时, 钱勇, 屠云洁, 等. 19个地方鸡种遗传变异的微卫星和AFLP指纹分析[J]. 西北农林科技大学学报(自然科学版), 2005(12):6-12.
[32] 高玉时, 李慧芳, 陈国宏, 等. 地方鸡种微卫星DNA指纹图谱建立与遗传多样性研究[J]. 云南农业大学学报, 2005(3):313-318.
[33] 孙少华, 桑润滋, 师守堃, 等. 肉牛杂交优势预测、评估及其应用研究[J]. 遗传学报, 2000(7):580-589.
[34] 张庆桥, 代敏敏, 靳伟, 等. 微卫星标记预测太行鸡与其他高产商品蛋鸡亲本间的杂种优势[J]. 黑龙江畜牧兽医, 2019(11):46-52.
[35] 盛中华, 陈国宏, 潘玉春, 等. 基于基因组遗传标记的上海白猪(上系)杂交优势预测分析[J]. 上海农业学报, 2018, 34(6):60-64.
[36] Sun CY, VanRaden PM, Cole JB, et al. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects[J]. PLoS One, 2014, 9(8). doi: 10.1371/journal.pone.0103934.
[37] 施启顺, 柳小春, 吴晓林. 商品杂种猪生长和肉用性状的杂交效果参数与RAPD带纹相似系数间关系浅析[J]. 遗传学报, 2001(8):722-729.
[1] . [J]. China Swine Industry, 2021, 16(4): 13-16.
[2] . [J]. China Swine Industry, 2021, 16(4): 17-21.
[3] . [J]. China Swine Industry, 2021, 16(4): 27-31.
[4] . [J]. China Swine Industry, 2021, 16(4): 32-35.
[5] . [J]. China Swine Industry, 2021, 16(4): 36-38.
[6] REN Xiaolin, WANG Qing, XU Min, HU Jianhe, XU Yanzhao. Study on the Application of Soluble Matter from Corn Distiller Dried Soluble in the Diet of Fattening Pigs [J]. China Swine Industry, 2021, 16(4): 39-41.
[7] . [J]. China Swine Industry, 2021, 16(4): 42-45.
[8] CHI Lan, XUE Zhong, ZHU Guangqin. Analysis on the Feeding and Management Techniques of Different Pig Herds in Modern Pig Farms [J]. China Swine Industry, 2021, 16(4): 46-50.
[9] ZHANG Yanbing, ZHANG Shilei, LIU Liangbo, XIE Quanliang, SUN Yanming. Bioinformatics Analysis and Methylation Region Prediction of African Swine Fever Virus E165R Gene Promoter [J]. China Swine Industry, 2021, 16(4): 51-56.
[10] . [J]. China Swine Industry, 2021, 16(4): 57-60.
[11] ZHOU Haiqin, LIN Jinru, CHEN Mingxia, QU Yonggang, LIANG Yan, LI Na, CHANG Junshuai, ZHANG Xiaoyu. Detection and Analysis of Antibody to gE Protein of PRV in Some Areas of Northern Xinjiang in 2020 by ELISA [J]. China Swine Industry, 2021, 16(4): 61-64.
[12] . [J]. China Swine Industry, 2021, 16(4): 65-68.
[13] . [J]. China Swine Industry, 2021, 16(4): 69-72.
[14] . [J]. China Swine Industry, 2021, 16(4): 73-75.
[15] . [J]. China Swine Industry, 2021, 16(4): 76-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!