China Swine Industry ›› 2021, Vol. 16 ›› Issue (3): 51-54.doi: 10.16174/j.issn.1673-4645.2021.03.011

Previous Articles     Next Articles

  

  • Received:2021-03-22 Online:2021-06-25 Published:2021-07-15

CLC Number: 

  • S828
[1] Elena AZ, Leonid IK, Alexei VI, et al.Enzyme immunoassay and proteomic characterization of troponin I as a marker of mammalian muscle compounds in raw meat and some meat products[J]. Meat Science, 2015(105):46-52.
[2] 杨娜, 王向军, 乔晴, 等. 变性高效液相色谱技术鉴别猪牛源性成分的试验[J]. 中国兽医杂志, 2016, 52(6):89-91.
[3] Kesmen Z, Gulluce A, Sahin F, et al.Identification of meat species by Taq Man-based real-time PCR assay[J]. Meat Science, 2009(4):444-449.
[4] 徐帅, 郝琴, 代艳发, 等. LAMP法与PCR法在食品动物源性成分检测中的应用[J]. 中国食物与营养, 2020, 26(10):20-23.
[5] 白东亭. 基因芯片应用前景[J]. 微生物学免疫学进展, 2002(4):100-103.
[6] 孟甜. 生物芯片在食品安全检测中的应用研究[J]. 生命科学仪器, 2012, 10(4):32-36.
[7] 王振全, 罗宝正, 薄清如, 等. 基因芯片方法检测6种动物源性人兽共患病病原[J]. 中国预防兽医学报, 2011, 33(10):804-807.
[8] 杨若松, 姜金庆, 张志, 等. 4种猪群常见病毒基因芯片检测方法的建立与应用[J]. 西北农林科技大学学报(自然科学版), 2012, 40(3):34-38.
[9] Kim YK, Lim SI, Cho YY, et al.The CSFV DNA chip: a novel diagnostic assay for classical swine fever virus[J]. Journal of Virological Methods, 2014(204):44-48.
[10] Montiel-Sosa JF, Ruiz-Pesini E, Montoya J, et al.Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA[J]. Journal of Agricultural and Food Chemistry, 2000, 48(7):2829-2832.
[11] 朱业培, 王玮, 吕青骎, 等. 基于基因芯片技术检测6种动物源性成分[J]. 南京农业大学学报, 2015, 38(6):1003-1008.
[12] 黄潇航, 施远妮, 符云芳, 等. 基因芯片技术在动物疫病检测中的应用研究进展[J]. 贵州畜牧兽医, 2020, 44(4):49-51.
[13] 朱余军, 饶丹, 丛锋, 等. I群禽腺病毒液相基因芯片检测方法的建立[J]. 中国兽医杂志, 2017, 53(6):50-52.
[1] TAN Ying, ZENG Fang, LI Dasheng. The Development of Hog Industry in the Context of Environmental Regulation and African Swine Fever: Practice Investigation and Case Study [J]. China Swine Industry, 2021, 16(3): 13-18.
[2] . [J]. China Swine Industry, 2021, 16(3): 19-25.
[3] . [J]. China Swine Industry, 2021, 16(3): 26-28.
[4] . [J]. China Swine Industry, 2021, 16(3): 29-31.
[5] . [J]. China Swine Industry, 2021, 16(3): 32-35.
[6] . [J]. China Swine Industry, 2021, 16(3): 36-37.
[7] XU Weilin, LI Meidi, JI Yikuan, ZHOU Daofu, ZHANG Qi, YIN Huifang. Artificial Insemination Technology under Modern Breeding [J]. China Swine Industry, 2021, 16(3): 38-39.
[8] CHI Lan, XUE Zhong, ZHU Guangqin. Causes of Influencing Estrus Rate of Weaned Sows and Countermeasures [J]. China Swine Industry, 2021, 16(3): 40-43.
[9] WANG Xi, WANG Huilin, CAO Gang, LI Jiajie, CHEN Songchang, FENG Xiangrui. Isolation and Identification of Enterococcus Faecalis Beneficial to the Birth Canal of Sow [J]. China Swine Industry, 2021, 16(3): 44-50.
[10] . [J]. China Swine Industry, 2021, 16(3): 55-57.
[11] WANG Ziyang, QU Yonggang, SUN Qiongfei, DANG Ruiying, ZHOU Haiqin, ZHANG Xiaoyu, ZHANG Jiarui, CHANG Junshuai, LI Yan. Detection and Analysis of Antibodies Against Porcine Reproductive and Respiratory Syndrome Virus in XinJiang in 2020 [J]. China Swine Industry, 2021, 16(3): 58-61.
[12] ZHENG Longlong, PAN Guomei, ZHANG Li, TAN Xiaolong. Etiological Diagnosis of Diarrhea in a Fattening Pig Farm of Shanxi Province [J]. China Swine Industry, 2021, 16(3): 62-64.
[13] DANG Ruiying, ZHANG Xiaoyu, WANG Ziyang, SUN Qiongfei, CHANG Junshuai, QU Yonggang, LI Yan. Detection and Analysis of PCV2 Antibody in Large-scale Pig Farms in Xinjiang in 2020 [J]. China Swine Industry, 2021, 16(3): 65-68.
[14] . [J]. China Swine Industry, 2021, 16(3): 69-71.
[15] . [J]. China Swine Industry, 2021, 16(3): 72-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!