中国猪业 ›› 2025, Vol. 20 ›› Issue (1): 3-11.doi: 10.16174/j.issn.1673-4645.2025.01.001

• 营养饲料 • 上一篇    下一篇

铁营养与仔猪腹泻

杨馨雨,车炼强,陈代文,伍爱民   

  1. 四川农业大学动物营养研究所/动物抗病营养教育部重点实验室
  • 出版日期:2025-03-07 发布日期:2025-02-25

  • Online:2025-03-07 Published:2025-02-25

摘要: 仔猪腹泻是养猪业面临的世界难题,每年造成的经济损失高达几十亿美元。仔猪的腹泻病受到营养、生理、微生物、环境和管理策略等多种因素影响。铁作为仔猪必需营养素,不仅在维持肠道完整性与健康、预防缺铁性贫血和腹泻等方面起着直接作用,还能改变肠道微生物的菌群结构,间接影响肠道稳态。肠内适宜的铁水平是仔猪健康的基础,而新生仔猪天生缺铁,因此,为了科学评估膳食补铁剂量,预防仔猪腹泻,有必要全面认识铁元素对宿主和微生物的相互作用。本文总结了仔猪腹泻的机制与类型,从仔猪自身及其肠道微生物2方面回顾了铁元素影响仔猪腹泻的最新发现,将为生猪的精准养殖提供铁在畜牧业中的科学应用。

关键词: 铁营养, 仔猪, 腹泻, 肠道微生物, 肠道菌群, 饲养管理, 养殖

中图分类号:  S828;S816

[1] DIXON SJ, STOCKWELL BR. The role of iron and reactive oxygen species in cell death[J]. Nature Chemical Biology, 2014, 10:9-17. [2] ZHUO Z, YU XN, LI SS, et al. Heme and non-heme iron on growth performances, blood parameters, tissue mineral concentration, and intestinal morphology of weanling pigs[J]. Biological Trace Element Research, 2019, 187(2):411-417. [3] LEE SH, SHINDE P, CHOI J, et al. Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs[J]. Biological Trace Element Research, 2008, 126(1):57-68. [4] ITO M, SAWADA H, OHISHI K, et al. Suppressive effects of bifidobacteria on lipid peroxidation in the colonic mucosa of iron-overloaded mice[J]. Journal of Dairy Science, 2001, 84(7):1583-1589. [5] DING HX, YU XN, FENG J. Iron homeostasis disorder in piglet intestine[J]. Metallomics, 2020, 12(10):1494-1507. [6] NAGARAJU GP, BASHA R, RAJITHA B, et al. Aquaporins: their role in gastrointestinal malignancies[J]. Cancer Letters, 2016, 373(1):12-18. [7] HU CA, HOU YQ, YI D, et al. Autophagy and tight junction proteins in the intestine and intestinal diseases[J]. Animal Nutrition, 2015, 1(3):123-127. [8] ZHU C, YANG K, YE J, et al. 052 Differential expression of intestinal ion transporters and water channel aquaporins in young piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Animal Science, 2017, 95(suppl_4):25-26. [9] TANG QS, LAN TY, ZHOU CY, et al. Nutrition strategies to control post-weaning diarrhea of piglets: from the perspective of feeds[J]. Animal Nutrition, 2024, 17:297-311. [10] THIAGARAJAH J, WONG SKM, RICHARDS DR, et al. Historical and contemporary cultural ecosystem service values in the rapidly urbanizing city state of Singapore[J]. Ambio, 2015, 44(7):666-677. [11] PERITORE-GALVE FC, KAJI I, SMITH A, et al. Increased intestinal permeability and downregulation of absorptive ion transportersNhe3, Dra, andSglt1contribute to diarrhea duringClostridioides difficileinfection[J]. Gut Microbes, 2023, 15(1):2225841. [12] LUISE D, BERTOCCHI M, MOTTA V, et al. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics[J]. Journal of Animal Science and Biotechnology, 2019, 10(1):74. [13] NGENDAHAYO MUKIZA C, DUBREUIL JD. Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins[J]. Infection and Immunity, 2013, 81(8):2819-2827. [14] RHOUMA M, FAIRBROTHER M,FRANCIS B. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies[J]. Acta Veterinaria Scandinavica, 2017, 59(1). doi: 10.1186/s13028-017-0299-7. [15] BHANDARI SK, OPAPEJU FO, KRAUSE DO, et al. Dietary protein level and probiotic supplementation effects on piglet response to Escherichia coli K88 challenge: performance and gut microbial population[J]. Livestock Science, 2010, 133(1/2/3):185-188. [16] ATASEVER AG, OZCAN PE, KASALI K, et al. The frequency, risk factors, and complications of gastrointestinal dysfunction during enteral nutrition in critically ill patients[J]. Therapeutics and Clinical Risk Management, 2018, 14:385-391. [17] JI P, KIM B, HE YJ, et al. A piglet model studying the role of dietary iron on host resilience to enterotoxigenic E. coli infection in early childhood (P24-057-19)[J]. Current Developments in Nutrition, 2019, 3:nzz044.P24-nzz0457-19. [18] WANG JJ, ZHU NN, SU XM, et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis[J]. Cells, 2023, 12(5):793. [19] ABBAS M, HAYIRLI Z, DRAKESMITH H, et al. Effects of iron deficiency and iron supplementation at the host-microbiota interface: Could a piglet model unravel complexities of the underlying mechanisms?[J]. Frontiers in Nutrition, 2022, 9:927754. [20] NAIRZ M, WEISS G. Iron in infection and immunity[J]. Molecular Aspects of Medicine, 2020, 75:100864. [21] MILTO IV, SUHODOLO IV, PROKOPIEVA VD, et al. Molecular and cellular bases of iron metabolism in humans[J]. Biochemistry (Moscow), 2016, 81(6):549-564. [22] DE CASTRO CARDOSO PEREIRA PM, DOS REIS BALTAZAR VICENTE AF. Meat nutritional composition and nutritive role in the human diet[J]. Meat Science, 2013, 93(3):586-592. [23] SIMPSON RJ, MCKIE AT. Regulation of intestinal iron absorption: the mucosa takes control?[J]. Cell Metabolism, 2009, 10(2):84-87. [24] MCKIE AT, BARROW D, LATUNDE-DADA GO, et al. An iron-regulated ferric reductase associated with the absorption of dietary iron[J]. Science, 2001, 291(5509):1755-1759. [25] XIA Y, LUO QH, HUANG C, et al. Ferric citrate-induced colonic mucosal damage associated with oxidative stress, inflammation responses, apoptosis, and the changes of gut microbial composition[J]. Ecotoxicology and Environmental Safety, 2023, 249:114364. [26] GART EV, SUCHODOLSKI JS, WELSH TH, et al. Salmonella typhimurium and multidirectional communication in the gut[J]. Frontiers in Microbiology, 2016, 7:1827. [27] ANDREWS SC, ROBINSON AK, RODRíGUEZ-QUI?ONES F. Bacterial iron homeostasis[J]. FEMS Microbiology Reviews, 2003, 27(2/3):215-237. [28] RATLEDGE C, DOVER LG. Iron metabolism in pathogenic bacteria[J]. Annual Review of Microbiology, 2000, 54:881-941. [29] GREWAL US, RASTOG P, AYYAPPAN S. Anemia of Inflammation[M]. Springer, Cham,2024. [30] IATSENKO I, MARRA A, BOQUETE J, et al. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13):7317-7325. [31] SEYOUM Y, BAYE K, HUMBLOT C. Iron homeostasis in host and gut bacteria–a complex interrelationship[J]. Gut Microbes, 2021, 13(1):1874855. [32] VENN JAJ, MCCANCE RA, WIDDOWSON EM. Iron metabolism in piglet anaemia[J]. Journal of Comparative Pathology and Therapeutics, 1947, 57:314-325. [33] LIPI?SKI P, STARZY?SKI RR, CANONNE-HERGAUX F, et al. Benefits and risks of iron supplementation in anemic neonatal pigs[J]. The American Journal of Pathology, 2010, 177(3):1233-1243. [34] UEBERSCH?R S. Sudden death in suckling piglets following administration of iron-dextran-preparation[J]. Deutsche Tierarztliche Wochenschrift, 1966, 73(7):145-150. [35] MAHAN DC, NEWTON EA. Effect of initial breeding weight on macro- and micromineral composition over a three-parity period using a high-producing sow genotype[J]. Journal of Animal Science, 1995, 73(1):151-158. [36] WATSON A, LIPINA C, MCARDLE HJ, et al. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1[J]. Cellular Signalling, 2016, 28(5):412-424. [37] KRAMER JL, BALTATHAKIS I, ALCANTARA OSF, et al. Differentiation of functional dendritic cells and macrophages from human peripheral blood monocyte precursors is dependent on expression of p21 (WAF1/CIP1) and requires iron[J]. British Journal of Haematology, 2002, 117(3):727-734. [38] SCHAIBLE UE, KAUFMANN SHE. Iron and microbial infection[J]. Nature Reviews Microbiology, 2004, 2(12):946-953. [39] PU JN, TIAN G, LI B, et al. Trace mineral overload induced hepatic oxidative damage and apoptosis in pigs with long-term high-level dietary mineral exposure[J]. Journal of Agricultural and Food Chemistry, 2016, 64(8):1841-1849. [40] PRASNICKA A, LASTUVKOVA H, ALAEI FARADONBEH F, et al. Iron overload reduces synthesis and elimination of bile acids in rat liver[J]. Scientific Reports, 2019, 9:9780. [41] FENTON HJH. LXXIII.—Oxidation of tartaric acid in presence of iron[J]. Journal of the Chemical Society Transactions, 1894, 65:899-910. [42] FANG SL, ZHUO Z, YU XN, et al. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats[J]. Journal of Trace Elements in Medicine and Biology, 2018, 47:12-20. [43] MCKENZIE SJ, BAKER MS, BUFFINTON GD, et al. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease[J]. Journal of Clinical Investigation, 1996, 98(1):136-141. [44] LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4):479-489. [45] FEARNHEAD HO, VANDENABEELE P, VANDEN BERGHE T. How do we fit ferroptosis in the family of regulated cell death?[J]. Cell Death & Differentiation, 2017, 24(12):1991-1998. [46] ANGELI JPF, SHAH R, PRATT DA, et al. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends in Pharmacological Sciences, 2017, 38(5):489-498. [47] LAPARRA JM, OLIVARES M, SANZ Y. Oral administration ofBifidobacterium longumCECT 7347 ameliorates gliadin-induced alterations in liver iron mobilisation[J]. British Journal of Nutrition, 2013, 110(10):1828-1836. [48] PAGANINI D, ZIMMERMANN MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review ?[J]. The American Journal of Clinical Nutrition, 2017, 106:1688S-1693S. [49] CHENG XR, GUAN LJ, MUSKAT MN, et al. Effects of Ejiao peptide–iron chelates on intestinal inflammation and gut microbiota in iron deficiency anemic mice[J]. Food & Function, 2021, 12(21):10887-10902. [50] TOMPKINS GR, O’DELL NL, BRYSON IT, et al. The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine[J]. Current Microbiology, 2001, 43(1):38-42. [51] CHEN XY, ZHANG XF, ZHAO J, et al. Split iron supplementation is beneficial for newborn piglets[J]. Biomedicine & Pharmacotherapy, 2019, 120:109479. [52] JI P, L?NNERDAL B, KIM K, et al. Iron oversupplementation causes hippocampal iron overloading and impairs social novelty recognition in nursing piglets[J]. The Journal of Nutrition, 2019, 149(3):398-405.
[1] 杜玉诗, 郭建凤, 王为全. 烟台黑猪和长烟杂交猪繁殖性能及育肥产肉性能比较[J]. 中国猪业, 2025, 20(1): 55-62.
[2] 林 艳, 夏嘉鑫, 周远成, 李 敏, 郑勤琴, 陈莉群, 岳丰雄. 猪肠病毒 G 型的分离鉴定及致病性研究[J]. 中国猪业, 2025, 20(1): 63-72.
[3] 王明凯, 李佳, 郭宝港, 张文娟, 申小冉, 李扬, 曾勇庆, 陈伟. 泰山黑猪和长大二元猪粪便菌群结构与功能分析[J]. 中国猪业, 2024, 19(6): 3-13.
[4] 吴买生,李玉莲,谭红,吴小琳,刘冬明,何炯斌. 植物甾醇在养猪生产中的应用研究进展[J]. 中国猪业, 2024, 19(6): 60-65.
[5] 周雅蕗, 王成碧, 谢卓雅, 赵建飞, 尹恒, 刘静波. 猪用益生菌和益生元开发技术和方法研究进展[J]. 中国猪业, 2024, 19(5): 11-21.
[6] 赵 敏,胡广英,白 海,曹日亮. 智能化养猪装备的研究进展[J]. 中国猪业, 2024, 19(4): 78-85.
[7] 岳健民, 朱君, 刘胤池, 赵宇亮, 贾楠, 陈超, 李斌. 猪舍智能作业机器人导航技术研究进展[J]. 中国猪业, 2024, 19(3): 15-23.
[8] 周昕, 冯钧哲, 徐杏, 谢传奇, 吴越, 李向军, 刘凯歌, 楼喜中, 王星博, 周卫东. 猪舍环境精准控制模型及其优化算法[J]. 中国猪业, 2024, 19(3): 24-33.
[9] 阳红莲,何玉华,朱玲,徐志文. 藏香猪流行性腹泻病毒的PCR检测及毒株分型[J]. 中国猪业, 2024, 19(2): 67-73.
[10] 刘洋,乌云花. 不同规模生猪养殖成本收益分析——以山东省为例[J]. 中国猪业, 2024, 19(2): 82-94.
[11] 李雨菁,郝瑞荣. 葡萄籽原花青素对不同生长阶段猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 19-24.
[12] 赵勤辉,许婷婷,刘家,汤海鸥. 复合营养性膏剂对新生仔猪生长性能的影响[J]. 中国猪业, 2024, 19(1): 25-31.
[13] 白雪,莫玉鹏,李茂宁,郑浩东,陈思宇,王晓晔. 一例规模化猪场流行性腹泻病的诊断与防控风险分析[J]. 中国猪业, 2024, 19(1): 57-62.
[14] 冯兴尧, 王海峰, 朱君, 孙想, 邱阳, 李斌. 基于YOLOv5模型的仔猪社交识别方法研究[J]. 中国猪业, 2024, 19(1): 73-83.
[15] 鲍艳珍. 我国大规模生猪养殖全要素生产率的时空差异——基于Malmquist指数和超效率SBM模型[J]. 中国猪业, 2024, 19(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!