中国猪业 ›› 2025, Vol. 20 ›› Issue (1): 35-46.doi: 10.16174/j.issn.1673-4645.2025.01.004

• 遗传繁殖 • 上一篇    下一篇

猪精子冷冻保存研究进展

张 航,杨宇泽,Jesse Oluwaseun Ayantoye,董建华,潘红梅,赵学明   

  1. 中国农业科学院北京畜牧兽医研究所
  • 出版日期:2025-03-07 发布日期:2025-02-25

  • Online:2025-03-07 Published:2025-02-25

摘要: 精子冷冻保存技术是实现猪精子远距离运输及长时间储存的重要手段,对于充分发挥优良公猪的繁育潜力及保存优秀公猪种质资源具有重要意义。然而,冷冻及解冻过程会对猪精子的细胞结构、表观遗传及代谢等方面造成损伤,进而导致解冻后精子的受精能力大大降低,极大程度地限制猪精子冷冻保存技术的推广应用。众多研究表明,保护细胞结构、筛选抗冻相关基因及改进冻融程序是提高猪精子冷冻保存效率的有效手段。因此,本文重点对猪精子冻融损伤机制及相应保护措施加以综述,以期为今后开发高效的猪精子冷冻保存技术提供参考。

关键词: 生猪, 精子, 精液, 冷冻保存, 冷冻效率, 公猪, 种质资源

中图分类号:  S828;S858

[1] JOHNSON LA, WEITZE KF, FISER P, et al. Storage of boar Semen[J]. Animal Reproduction Science, 2000, 62(1/2/3):143-172. [2] YESTE M, RODRíGUEZ-GIL JE, BONET S. Artificial insemination with frozen-thawed boar sperm[J]. Molecular Reproduction and Development, 2017, 84(9):802-813. [3] ROCA J, PARRILLA I, BOLARIN A, et al. Will AI in pigs become more efficient?[J]. Theriogenology, 2016, 86(1):187-193. [4] ALKMIN DV, PARRILLA I, TARANTINI T, et al. Intra-and interboar variability in flow cytometric sperm sex sorting[J]. Theriogenology, 2014, 82(3):501-508. [5] CURRY MR. Cryopreservation of Semen from domestic livestock[J]. Methods in Molecular Biology, 1995, 38:189-197. [6] POLGE C, DAY BN,GROVES TW. Artificial insemination in pigs[J]. The Veterinary Record, 1956, 68:62-76. [7] PURSEL VG, JOHNSON LA. Freezing of boar spermatozoa: fertilizing capacity with concentrated Semen and a new thawing procedure[J]. Journal of Animal Science, 1975, 40(1):99-102. [8] WESTENDORF P, RICHTER L, TREU H. Deep freezing of boar sperma. Laboratory and insemination results using the Hülsenberger paillete method[J]. DTW Deutsche Tierarztliche Wochenschrift, 1975, 82(7):261-267. [9] WHITTINGHAM DG, LEIBO SP, MAZUR P. Survival of mouse embryos frozen to-196℃ and-269℃[J]. Science, 1972, 178(4059):411-414. [10] YESTE M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs[J]. Theriogenology, 2016, 85(1):47-64. [11] DE ALCANTARA MENEZES T, MELLAGI APG, DA SILVA OLIVEIRA G, et al. Antibiotic-free extended boar Semen preserved under low temperature maintains acceptable in-vitro sperm quality and reduces bacterial load[J]. Theriogenology, 2020, 149:131-138. [12] SIEME H, OLDENHOF H, WOLKERS WF. Sperm membrane behaviour during cooling and cryopreservation[J]. Reproduction in Domestic Animals, 2015, 50(S3):20-26. [13] BWANGA CO, EKWALL H, RODRIGUEZ-MARTINEZ H. Ⅲ: ultrastructure of boar spermatozoa frozen ultra-rapidly at various stages of conventional freezing and thawing[J]. Acta Veterinaria Scandinavica, 1991, 32(4):463-471. [14] FAHY GM, WOWK B. Principles of cryopreservation by vitrification[J]. Methods in Molecular Biology, 2014:21-82. [15] ARRAZTOA CC, MIRAGAYA MH, CHAVES MG, et al. Porcine sperm vitrification Ⅱ: spheres method[J]. Andrologia, 2017, 49(8):e12738. [16] ZENG CJ, TANG KY, HE L, et al. Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation[J]. Cryobiology, 2014, 68(3):395-404. [17] BUHR MM, FISER P, BAILEY JL, et al. Cryopreservation in different concentrations of glycerol alters boar sperm and their membranes[J]. Journal of Andrology, 2001, 22(6):961-969. [18] ARRAZTOA CC, MIRAGAYA MH, CHAVES MG, et al. Porcine sperm vitrification I: cryoloops method[J]. Andrologia, 2017, 49(7):e12706. [19] HOCHI S, ABDALLA H, HARA H, et al. Challenging endeavour for preservation of freeze-dried mammalian spermatozoa[J]. Journal of Reproduction and Development, 2011, 57(5):557-563. [20] KESKINTEPE L, EROGLU A. Freeze-drying of mammalian sperm[J]. Methods in Molecular Biology, 2015, 1257:489-497. [21] OLACIREGUI M, GIL L. Freeze-dried spermatozoa: a future tool?[J]. Reproduction in Domestic Animals, 2017, 52(S2):248-254. [22] GIL L, OLACIREGUI M, LU?O V, et al. Current status of freeze-drying technology to preserve domestic animals sperm[J]. Reproduction in Domestic Animals, 2014, 49(s4):72-81. [23] SCHULZE M, KUSTER C, SCH?FER J, et al. Effect of production management on Semen quality during long-term storage in different European boar studs[J]. Animal Reproduction Science, 2018, 190:94-101. [24] YESTE M. Recent advances in boar sperm cryopreservation: state of the art and current perspectives[J]. Reproduction in Domestic Animals, 2015, 50(S2):71-79. [25] PEZO F, ROMERO F, ZAMBRANO F, et al. Preservation of boar Semen: an update[J]. Reproduction in Domestic Animals, 2019, 54(3):423-434. [26] PARKS JE, LYNCH DV. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes[J]. Cryobiology, 1992, 29(2):255-266. [27] BLANCH E, TOMáS C, GRAHAM JK, et al. Response of boar sperm to the treatment with cholesterol-loaded cyclodextrins added prior to cryopreservation[J]. Reproduction in Domestic Animals, 2012, 47(6):959-964. [28] GLORIA A, CONTRI A, GROTTA L, et al. Effect of dietary grape Marc on fresh and refrigerated boar Semen[J]. Animal Reproduction Science, 2019, 205:18-26. [29] RIBAS-MAYNOU J, MATEO-OTERO Y, DELGADO-BERMúDEZ A, et al. Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states: a systematic review[J]. Theriogenology, 2021, 173:279-294. [30] FLORES E, CIFUENTES D, FERNáNDEZ-NOVELL JM, et al. Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm[J]. Theriogenology, 2008, 69(9):1083-1094. [31] GUTIéRREZ-PéREZ O, JUáREZ-MOSQUEDA ML, MOTA D, et al. The disruption in actin-perinuclear theca interactions are related with changes induced by cryopreservation observed on sperm chromatin nuclear decondensation of boar Semen[J]. Cryobiology, 2011, 62(1):32-39. [32] ZHANG B, WANG Y, WU CH, et al. Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS[J]. BMC Veterinary Research, 2021, 17(1):127. [33] FLORES E, FERNáNDEZ-NOVELL JM, PE?A A, et al. Cryopreservation-induced alterations in boar spermatozoa mitochondrial function are related to changes in the expression and location of midpiece mitofusin-2 and actin network[J]. Theriogenology, 2010, 74(3):354-363. [34] ZENG CJ, PENG WP, DING L, et al. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation[J]. Cryobiology, 2014, 69(1):119-127. [35] AURICH C, SCHREINER B, ILLE N, et al. Cytosine methylation of sperm DNA in horse Semen after cryopreservation[J]. Theriogenology, 2016, 86(5):1347-1352. [36] KHOSRAVIZADEH Z, KHODAMORADI K, RASHIDI Z, et al. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring[J]. Journal of Assisted Reproduction and Genetics, 2022, 39(8):1815-1824. [37] EDUPUGANTI RR, GEIGER S, LINDEBOOM RGH, et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis[J]. Nature Structural & Molecular Biology, 2017, 24(10):870-878. [38] QIN ZY, WANG WC, ALI MA, et al. Transcriptome-wide m6A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation[J]. BMC Genomics, 2021, 22(1):588. [39] DAI DH, QAZI IH, RAN MX, et al. Exploration of miRNA and mRNA profiles in fresh and frozen-thawed boar sperm by transcriptome and small RNA sequencing[J]. International Journal of Molecular Sciences, 2019, 20(4):802. [40] ZHANG Y, DAI DH, CHANG Y, et al. Cryopreservation of boar sperm induces differential microRNAs expression[J]. Cryobiology, 2017, 76:24-33. [41] ZHANG YJ, SUN ZX, JIA JQ,, et al. Overview of Histone Modification[J]. Advances in Experimental Medicine and Biology, 2021,1283:1-16. [42] SHVEDUNOVA M, AKHTAR A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2022, 23(5):329-349. [43] KIM JC, LI YH, LEE S, et al. Effects of cryopreservation on Ca2+ signals induced by membrane depolarization, caffeine, thapsigargin and progesterone in boar spermatozoa[J]. Molecules and Cells, 2008, 26(6):558-565. [44] OKAZAKI T, YOSHIDA S, TESHIMA H, et al. The addition of calcium ion Chelator, EGTA to thawing solution improves fertilizing ability in frozen–thawed boar sperm[J]. Animal Science Journal, 2011, 82(3):412-419. [45] GUALTIERI R, KALTHUR G, BARBATO V, et al. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells[J]. Antioxidants, 2021, 10(3):337. [46] KUMARESAN A, SIQUEIRA AP, HOSSAIN MS, et al. Quantification of kinetic changes in protein tyrosine phosphorylation and cytosolic Ca2+ concentration in boar spermatozoa during cryopreservation[J]. Reproduction, Fertility and Development, 2012, 24(4):531. [47] KATOH Y, TAKEBAYASHI K, KIKUCHI A, et al. Porcine sperm capacitation involves tyrosine phosphorylation and activation of aldose reductase[J]. Reproduction, 2014,148(4):389-401. [48] RODRíGUEZ-GIL JE, BONET S. Current knowledge on boar sperm metabolism: comparison with other mammalian species[J]. Theriogenology, 2016, 85(1):4-11. [49] GUTHRIE HD, WELCH GR, LONG JA. Mitochondrial function and reactive oxygen species action in relation to boar motility[J]. Theriogenology, 2008, 70(8):1209-1215. [50] AWDA BJ, MACKENZIE-BELL M, BUHR MM. Reactive oxygen species and boar sperm Function1[J]. Biology of Reproduction, 2009, 81(3):553-561. [51] DE BRITO CRC, VARELA AS Jr, GHELLER SMM, et al. High-speed centrifugation of extender of freeze-thaw boar Semen[J]. Reproduction in Domestic Animals, 2021, 56(5):821-825. [52] WANG P, WANG YF, WANG CW, et al. Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing-thawing[J]. Zygote, 2014, 22(2):175-181. [53] BATHGATE R, MAXWELL W, EVANS G. Studies on the effect of supplementing boar Semen cryopreservation media with different avian egg yolk types on in vitro post-thaw sperm quality[J]. Reproduction in Domestic Animals, 2006, 41(1):68-73. [54] CHANAPIWAT P, KAEOKET K, TUMMARUK P. Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar Semen[J]. Asian Journal of Andrology, 2009, 11(5):600-608. [55] MALDJIAN A, PIZZI F, GLIOZZI T, et al. Changes in sperm quality and lipid composition during cryopreservation of boar Semen[J]. Theriogenology, 2005, 63(2):411-421. [56] PEZO F, YESTE M, ZAMBRANO F, et al. Antioxidants and their effect on the oxidative/nitrosative stress of frozen-thawed boar sperm[J]. Cryobiology, 2021, 98:5-11. [57] ZHU ZD, LI RN, FAN XT, et al. Resveratrol improves boar sperm quality via 5’ AMP-activated protein kinase activation during cryopreservation[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019:5921503. [58] SHEN T, JIANG ZL, LI CJ, et al. Effect of alpha-lipoic acid on boar spermatozoa quality during freezing–thawing[J]. Zygote, 2016, 24(2):259-265. [59] QIAN L, YU SJ, ZHOU Y. Protective effect of hyaluronic acid on cryopreserved boar sperm[J]. International Journal of Biological Macromolecules, 2016, 87:287-289. [60] RATCHAMAK R, RATSIRI T, KHEAWKANHA T, et al. Evaluation of cryopreserved boar Semen after supplementation sericin form silkworm (Bombyx mori) in Semen extender[J]. Animal Science Journal, 2020, 91(1):e13428. [61] XU DJ, WU L, YANG L, et al. Rutin protects boar sperm from cryodamage via enhancing the antioxidative defense[J]. Animal Science Journal, 2020, 91(1):e13328. [62] FU JL, YANG QZ, LI YH, et al. A mechanism by which Astragalus polysaccharide protects against ROS toxicity through inhibiting the protein dephosphorylation of boar sperm preserved at 4℃[J]. Journal of Cellular Physiology, 2018, 233(7):5267-5280. [63] WINN E, WHITAKER BD. Quercetin supplementation to the thawing and incubation media of boar sperm improves post-thaw sperm characteristics and the in vitro production of pig embryos[J]. Reproductive Biology, 2020, 20(3):315-320. [64] YANG SM, WANG T, WEN DG, et al. Protective effect of Rhodiola rosea polysaccharides on cryopreserved boar sperm[J]. Carbohydrate Polymers, 2016, 135:44-47. [65] PEI YF, YANG L, WU L, et al. Combined effect of apigenin and ferulic acid on frozen-thawed boar sperm quality[J]. Animal Science Journal, 2018, 89(7):956-965. [66] GADANI B, BUCCI D, SPINACI M, et al. Resveratrol and Epigallocatechin-3-gallate addition to thawed boar sperm improves in vitro fertilization[J]. Theriogenology, 2017, 90:88-93. [67] WENG XG, CAI MM, ZHANG YT, et al. Effect of Astragalus polysaccharide addition to thawed boar sperm on in vitro fertilization and embryo development[J]. Theriogenology, 2018, 121:21-26. [68] RECUERO S, FERNANDEZ-FUERTES B, BONET S, et al. Potential of seminal plasma to improve the fertility of frozen-thawed boar spermatozoa[J]. Theriogenology, 2019, 137:36-42. [69] GARCIA JC, DOMINGUEZ JC, PENA FJ, et al. Thawing boar Semen in the presence of seminal plasma: effects on sperm quality and fertility[J]. Animal Reproduction Science, 2010, 119(1/2):160-165. [70] OKAZAKI T, ABE S, YOSHIDA S, et al. Seminal plasma damages sperm during cryopreservation, but its presence during thawing improves Semen quality and conception rates in boars with poor post-thaw Semen quality[J]. Theriogenology, 2009, 71(3):491-498. [71] THURSTON LM, SIGGINS K, MILEHAM AJ, et al. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following Cryopreservation1[J]. Biology of Reproduction, 2002, 66(3):545-554. [72] MA?KOWSKA A, BRYM P, PAUKSZTO ?, et al. Gene polymorphisms in boar spermatozoa and their associations with post-thaw Semen quality[J]. International Journal of Molecular Sciences, 2020, 21(5):1902. [73] FRASER L, BRYM P, MOGIELNICKA-BRZOZOWSKA M, et al. Total RNA quality in boar spermatozoa with different freezability[J]. Polish Journal of Veterinary Sciences, 2019:181-185. [74] FRASER L, BRYM P, PAREEK CS, et al. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq[J]. Theriogenology, 2020, 142:400-413. [75] FRASER L, PAUKSZTO ?, MA?KOWSKA A, et al. Regulatory potential of long non-coding RNAs (lncRNAs) in boar spermatozoa with good and poor freezability[J]. Life, 2020, 10(11):300. [76] PRIBENSZKY C, HORVáTH A, VéGH L, et al. Stress preconditioning of boar spermatozoa: a new approach to enhance Semen quality[J]. Reproduction in Domestic Animals, 2011, 46(s2):26-30. [77] HORVáTH A, HARNOS A, SZENCI O, et al. Investigation of hydrostatic pressure-induced stress preconditioning of boar Semen using modified cryopreservation[J]. Reproduction in Domestic Animals, 2018, 53(6):1589-1593. [78] HORVáTH A, SZENCI O, NAGY K, et al. Stress preconditioning of Semen before cryopreservation improves fertility and increases the number of offspring born: a prospective randomised study using a porcine model[J]. Reproduction, Fertility and Development, 2016, 28(4):475. [79] TORRES MA, MONTEIRO MS, PASSARELLI MS, et al. The ideal holding time for boar Semen is 24?h at 17?℃ prior to short-cryopreservation protocols[J]. Cryobiology, 2019, 86:58-64. [80] WASILEWSKA K, ZASIADCZYK, FRASER L, et al. The benefits of cooling boar Semen in long-term extenders prior to cryopreservation on sperm quality characteristics[J]. Reproduction in Domestic Animals, 2016, 51(5):781-788. [81] BAISHYA SK, BISWAS RK, KADIRVEL G, et al. Effect of conventional and controlled freezing method on the post thaw characteristics of boar spermatozoa[J]. Animal Reproduction Science, 2014, 149(3/4):231-237. [82] ARRAZTOA CC, BACA CASTEX C, ALVAREZ GM, et al. In vitro production of porcine zygotes using intracytoplasmic injection of vitrified sperm[J]. Reproduction in Domestic Animals, 2017, 52(5):775-780. [83] SELLéS E, GADEA J, ROMAR R, et al. Analysis of In vitro fertilizing capacity to evaluate the freezing procedures of boar Semen and to predict the subsequent fertility[J]. Reproduction in Domestic Animals, 2003, 38(1):66-72. [84] TOMáS C, GóMEZ-FERNáNDEZ J, GóMEZ-IZQUIERDO E, et al. Effect of the holding time at 15℃ prior to cryopreservation, the thawing rate and the post-thaw incubation temperature on the boar sperm quality after cryopreservation[J]. Animal Reproduction Science, 2014, 144(3/4):115-121.
[1] 雷国凤, 陈奎蓉, 和艺云, 梁 晶. 广西地方猪品种肌内脂肪含量及相关基因表达分析[J]. 中国猪业, 2025, 20(1): 47-54.
[2] 王彦平, 郑凤玲, 赵雪艳, 李菁璇, 王继英, 王怀中. 氟烷基因对杜长大猪胴体、肉品质及血液生化指标的影响研究[J]. 中国猪业, 2024, 19(6): 26-32.
[3] 段晓红,解冰辉,骆菲,罗文学,郭彦军,刘廷玉,刘兴华,马军红,和利民,张军辉, 王贵江. 2020—2022 年河北省种猪常温精液质量品质的对比研究[J]. 中国猪业, 2024, 19(5): 49-55.
[4] 张海峰,王祖力,陈泽芳,朱增勇,谢水华. 2023 年我国生猪产业发展情况及未来发展趋势[J]. 中国猪业, 2024, 19(5): 90-100.
[5] 姚绿. 绿色金融赋能生猪产业高质量发展影响研究[J]. 中国猪业, 2024, 19(5): 101-109.
[6] 吴秋杰,刘 佳,陈华云,余群莲. 玉米豆粕减量替代营养调控在养猪上的研究进展[J]. 中国猪业, 2024, 19(4): 12-18.
[7] 王如心,王祖力,肖红波. 主要生猪养殖国粪污治理模式经验及启示[J]. 中国猪业, 2024, 19(4): 50-58.
[8] 陈 超,赵宇亮,王海峰,李 斌. 家畜智能分群装备研究进展[J]. 中国猪业, 2024, 19(4): 59-69.
[9] 赵 敏,胡广英,白 海,曹日亮. 智能化养猪装备的研究进展[J]. 中国猪业, 2024, 19(4): 78-85.
[10] 郑瑞强,邱 悦,李 玲,胡 艳. 生猪企业价值创造能力提升策略研究——基于13家生猪上市企业的财务数据[J]. 中国猪业, 2024, 19(4): 86-94.
[11] 田文勇,刘挥琳,吴 蔓,毛 昆. 乡村振兴背景下贵州省生猪产业与其他生猪产业大省的比较研究[J]. 中国猪业, 2024, 19(4): 95-104.
[12] 岳健民, 朱君, 刘胤池, 赵宇亮, 贾楠, 陈超, 李斌. 猪舍智能作业机器人导航技术研究进展[J]. 中国猪业, 2024, 19(3): 15-23.
[13] 周昕, 冯钧哲, 徐杏, 谢传奇, 吴越, 李向军, 刘凯歌, 楼喜中, 王星博, 周卫东. 猪舍环境精准控制模型及其优化算法[J]. 中国猪业, 2024, 19(3): 24-33.
[14] 周光亮,许源峰,杨慧,李新云,赵云翔,刘向东. 全产业链猪育种体系构建的研究进展[J]. 中国猪业, 2024, 19(3): 59-67.
[15] 李金海,李兴玉. 我国猪蓝耳病NADC34-like毒株的流行病学及致病性研究进展[J]. 中国猪业, 2024, 19(2): 59-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!