[1] 窦科峰, 张玄, 陶开山. 异种移植存在的问题及国内发展现状[J]. 空军军医大学学报, 2024, 15(1):1-4.
DOU KF, ZHANG X, TAO KS. Existing problems and do mestic development of xenotransplantation[J]. Journal of Air Force Medical University, 2024, 15(1):1-4.
[2] 张小燕, 王国辉, 韩士超, 等. 国内外异种器官移植的现状及进展[J]. 器官移植, 2024, 15(2):276-281.
ZHANG XY, WANG GH, HAN SC, et al. Present situation and progress of xenotransplantation at home and abroad[J]. Organ Transplantation, 2024, 15(2):276-281.
[3] 王敏敏. 体外器官支持治疗的进展[J]. 中国血液净化, 2021, 20(8):555-558.
WANG MM. The development of extracorporeal organ sup port therapy[J]. Chinese Journal of Blood Purification, 2021, 20(8):555-558.
[4] HUANG JF. Expert consensus on clinical trials of human xenotransplantation in China[J]. Health Care Science, 2022, 1(1):7-10.
[5] LUNNEY JK, VAN GOOR A, WALKER KE, et al. Importance of the pig as a human biomedical model[J]. Science Transl ational Medicine, 2021, 13(621):eabd5758.
[6] 窦科峰, 林智斌, 马先一. 异种移植:从基础到临床的瓶颈与对策[J]. 中国实用外科杂志, 2025, 45(1):5-10.
DOU KF, LIN ZB, MA XY. Xenotransplantation: bottlenecks and countermeasures in clinical transformation[J]. Chinese Journal of Practical Surgery, 2025, 45(1):5-10.
[7] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clini cal-grade porcine kidney xenotransplant using a human
decedent model [J]. American Journal of Transplantation, 2022, 22(4):1037-1053.
[8] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation [J]. New England Journal of Medicine, 2022, 386(20):1889-1898.
[9] MOAZAMI N, STERN JM, KHALIL K, et al. Pig-to-human heart xenotransplantation in two recently deceased human recipients[J]. Nature Medicine, 2023, 29(8):1989-1997.
[10] HEALTH NL. Two-month study of pig kidney xenotrans plantation gives new hope to the future of the organ supply [EB/OL]. https://nyulangone.org/news/two-month-study-pig -kidney-xenotransplantation-gives-new-hope-future-organ-supply.2025-3-31.
[11] REGALADO A. A brain-dead man was attached to a gene edited pig liver for three days[EB/OL]. https://www.technol ogyreview.com/2024/01/18/1086791/brain-dead-man-gene-edited-pig-liver.2025-3-31.
[12] LOCKE JE, KUMAR V, ANDERSON D, et al. Normal graft function after pig-to-human kidney xenotransplant [J]. JAMA Surgery, 2023, 158(10):1106.
[13] MA SJ, QI RC, HAN SC, et al. Plasma exchange and intravenous immunoglobulin prolonged the survival of a porcine kidney xenograft in a sensitized, deceased human recipient [J]. Chinese Medical Journal, 2024:1-15.
[14] WANG Y, CHEN G, PAN DK, et al. Pig-to-human kidney xenotransplants using genetically modified minipigs[J]. Cell Reports Medicine, 2024, 5(10):101744.
[15] 万恒易. 全球首例!清华长庚董家鸿院士团队合作完成猪—人肝肾联合异种移植 [EB/OL]. https://www.med.tsinghua.edu. cn/info/1405/3275.htm.2025-3-31.
WAN HY. World's first! Tsinghua Changgeng Academician Dong Jiahong's team collaborates to complete a combined
porcine-human liver and kidney xenotransplantation[EB/OL]. https://www.med.tsinghua.edu.cn/info/1405/3275.htm.2025-3-31.
[16] TAO KS, YANG ZX, ZHANG X, et al. Gene-modified pig to-human liver xenotransplantation [J]. Nature, 2025. doi: 10.1038/s41586-025-08799-1.
[17] SCHOOL HM. In a first, genetically edited pig kidney is transplanted into human[EB/OL]. https://hms.harvard.edu/news/first-genetically-edited-pig-kidney-transplanted-human. 2025-03-31.
[18] HEALTH NL. First-ever combined heart pump & gene-edited pig kidney transplant gives new hope to patient with terminal illness[EB/OL]. https://nyulangone.org/news/node/34872.2025-3-31.
[19] 安徽医科大学. 世界首例!我校一附院孙倍成团队成功完成猪肝移植给右叶巨大肝癌病人[EB/OL]. https://www.ahmu.edu. cn/2024/0524/c4325a157504/page.htm.2025-3-31.
ANHUI MEDICAL UNIVERSITY. A world first! Sun beicheng's team at the first affiliated hospital of our university successfully completed pig liver transplantation for a patient with giant liver cancer in the right lobe[EB/OL]. https://www.ahmu.edu.cn/2024/0524/c4325a157504/page.htm.2025-3-31.
[20] GRIFFITH BP, GOERLICH CE, SINGH AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. New England Journal of Medicine, 2022, 387(1):35-44.
[21] DEBORAH KOTZ. UM medicine faculty-scientists and clinicians perform second historic transplant of pig heart into patient with end-stage cardiovascular disease[EB/OL]. https: //www.medschool.umaryland.edu/news/2023/um-medicine -faculty-scientists-and-clinicians-perform-second-his toric-transplant-of-pig-heart-into-patient-with-end-sta ge-cardiovascular-disease.html.2025-3-31.
[22] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982):393-401.
[23] SMOOD B, HARA H, SCHOEL LJ, et al. Genetically-engineered pigs as sources for clinical red blood cell transfusion: what pathobiological barriers need to be overcome?[J]. Blood Reviews, 2019, 35:7-17.
[24] DAI YF, VAUGHT TD, BOONE J, et al. Targeted disruption of theα-1, 3-galactosyltransferase gene in cloned pigs[J]. Nature Biotechnology, 2002, 20(3):251-255.
[25] LAI LX, KOLBER-SIMONDS D, PARK KW, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092.
[26] CHENG WM, ZHAO H, YU HH, et al. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer[J]. Reproductive Biology and Endocrinology, 2016, 14(1):77.
[27] FENG C, LI XR, CUI HT, et al. Highly efficient generation of GGTA1 knockout pigs using a combination of TALEN mRNA and magnetic beads with somatic cell nuclear transfer [J]. Journal of Integrative Agriculture, 2016, 15(7):1540-1549.
[28] RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/ CAS technology in pig-to-human xenotransplantation research[J]. International Journal of Molecular Sciences, 2021, 22(6):3196.
[29] ESTRADA JL, MARTENS G, LI P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes [J]. Xenotransplantation, 2015, 22(3):194-202.
[30] NIU D, WEI HJ, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR/Cas9 [J]. Science, 2017, 357(6357):1303-1307.
[31] YUE YN, XU WH, KAN YN, et al. Extensive germline genome engineering in pigs [J]. Nature Biomedical Engineering, 2021, 5(2):134-143.
[32] WANG J, XU K, LIU T, et al. Production and functional verification of 8-gene (ggta1, cmah, β4galnt2, hcd46, hcd55, hcd59, htbm, hcd39)-edited donor pigs for xenotransplan tation [J]. Cell Proliferation, 2025. doi: 10.1111/cpr.70028. Epub ahead of print.
[33] HRYHOROWICZ M, LIPI?SKI D, HRYHOROWICZ S, et al. Application of genetically engineered pigs in biomedical
research[J]. Genes, 2020, 11(6):670.
[34] COOPER DKC, RAZA SS, CHABAN R, et al. Shooting for the moon: genome editing for pig heart xenotransplantation[J]. The Journal of Thoracic and Cardiovascular Surgery, 2023, 166(3):973-980.
[35] YUAN YL, CUI YY, ZHAO DY, et al. Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage[J]. Journal of Translational Medicine, 2024, 22(1):324.
[36] BROOM C, UKNIS ME. Methods of treating antibody-mediated rejection in organ transplant patients with c1-esterase inhibitor[P]. USA: US20150147319, 2015-05-28.
[37] HARRIS CL, PETTIGREW DM, LEA SM, et al. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay [J]. The Journal of Immunology, 2007, 178(1):352-359.
[38] ROOIJAKKERS SHM, VAN STRIJP JAG. Bacterial complement evasion [J]. Molecular Immunology, 2007, 44 (1/2/3): 23-32.
[39] JEONG YH, PARK CH, JANG GH, et al. Production of multiple transgenic yucatan miniature pigs expressing human complement regulatory factors, human CD55 CD59 and H-transferase genes[J]. PLoS One, 2013, 8(5):e63241.
[40] GOLLACKNER B, GOH SK, QAWI I, et al. Acute vascular rejection of xenografts: roles of natural and elicited xenoreactive antibodies in activation of vascular endothelial cells and in duction of procoagulant activity [J]. Transplantation, 77(11): 1735-1741.
[41] WANG Y, DU YN, ZHOU XY, et al. Efficient generation of B2m-null pigs via injection of zygote with TALENs[J]. Scientific Reports, 2016, 6:38854.
[42] ZHOU X, LIU Y, TANG C, et al. Generation of genetic modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5[J]. Chinese Journal of Biotechnology, 2022, 38(3):1096-1111.
[43] IDE K, WANG H, TAHARA H, et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12):5062-5066.
[44] LI J, EZZELARAB MB, AYARES D, et al. The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation[J]. Stem Cell Reviews and Reports, 2014, 10(1):79-85.
[45] PHELPS CJ, BALL SF, VAUGHT TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6):477-485.
[46] HARA H, WITT W, CROSSLEY T, et al. Human dominant negative class II transactivator transgenic pigs effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013, 140(1):39-46.
[47] PUGA YUNG G, BONGONI AK, PRADIER A, et al. Release of pig leukocytes and reduced human NK cell recruitment
during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood[J]. Xenotransplantation, 2018, 25(1). doi: 10.3760/cma.j.issn.1673-4394.2018.01.022.
[48] NOWAK-TERPILOWSKA A, LIPINSKI D, HRYHOROWICZM, et al. Production of ULBP1-KO pigs with human CD55 expression using CRISPR technology[J]. Journal of Applied Animal Research, 2020, 48(1):93-101.
[49] SHIMIZU A, YAMADA K. Pathology of renal xenograft rejection in pig to non-human primate transplantation[J]. Clinical Transplantation, 2006, 20(s15):46-52.
[50] MIWA Y, YAMAMOTO K, ONISHI A, et al. Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation[J]. Xenotransplantation, 2010, 17(1):26-37.
[51] CANTU E, BALSARA K, LI B, et al. Prolonged function of macrophage, von willebrand factor-deficient porcine pulmonary xenografts[J]. American Journal of Transplantation, 2007, 7(1):66-75.
[52] PARIS LL, CHIHARA RK, REYES LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial
cells mediates human platelet phagocytosis in vitro [J]. Xenotransplantation, 2011, 18(4):245-251.
[53] CHOI K, SHIM J, KO N, et al. Production of heterozygous alpha 1, 3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39 [J]. Transgenic Research, 2017, 26(2):209-224.
[54] WHEELER DG, JOSEPH ME, MAHAMUD SD, et al. Transgenic swine: expression of human CD39 protects against
myocardial injury[J]. Journal of Molecular and Cellular Cardiology, 2012, 52(5):958-961.
[55] YEOM HJ, KOO OJ, YANG J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10):e46646.
[56] OROPEZA M, PETERSEN B, CARNWATH JW, et al. Trans genic expression of the human A20 gene in cloned pigs
provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6):522-534.
[57] MOHIUDDIN MM, SINGH AK, SCOBIE L, et al. Graft dys function in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report[J]. The Lancet, 2023, 402(10399):397-410.
[58] DENNER J. Porcine endogenous retroviruses and xenotransplantation, 2021[J]. Viruses, 2021, 13(11):2156.
[59] MAO HZ, LI JY, LIAO GN, et al. The prevention strategies of swine viruses related to xenotransplantation [J]. Virology Journal, 2023, 20(1):121.
[60] YANG HQ, ZHANG J, ZHANG XW, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reprod uctive and respiratory syndrome virus[J]. Antiviral Research, 2018, 151:63-70.
[61] WANG HY, YANG H, SHIVALILA CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4):910-918.
[62] XUAN YY, PETERSEN B, LIU PT. Human and pig pluripotent stem cells: from cellular products to organogenesis and beyond[J]. Cells, 2023, 12(16):2075.
[63] DUAN XY, CHEN CL, DU C, et al. Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs[J]. Genome Research, 2025. doi: 10.1101/gr.279709.124.
[64] TAO JL, BAUER DE, CHIARLE R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing[J]. Nature Communications, 2023, 14:212.
[65] ZHANG XH, TEE LY, WANG XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Molecular Therapy-Nucleic Acids, 2015, 4(11):e264.
[66] KARVELIS T, GASIUNAS G, YOUNG J, et al. Rapid characterization of CRISPR/Cas9 protospacer adjacent motif sequence elements[J]. Genome Biology, 2015, 16(1):253.
[67] WANG Y, BI DF, QIN GS, et al. Cytosine base editor (hA3A BE3-NG)-mediated multiple gene editing for pyramid breeding in pigs[J]. Frontiers in Genetics, 2020, 11:592623.
[68] RYCZEK N, HRYHOROWICZ M, LIPINSKI D, et al. Evaluation of the CRISPR/Cas9 genetic constructs in efficient disruption of porcine genes for xenotransplantation purposes along with an assessment of the off-target mutation formation [J]. Genes, 2020, 11(6):713.
[69] FISCHER K, RIEBLINGER B, HEIN R, et al. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1 CMAH and B4GALNT2[J]. Xenotransplantation, 2020, 27(1):e12560.
[70] ANZALONE AV, KOBLAN LW, LIU DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7):824-844.
[71] YUAN HM, YU TT, WANG LY, et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs[J]. Cellular and Molecular Life Sciences, 2020, 77(4):719-733.
[72] FISICARO N, SALVARIS EJ, PHILIP GK, et al. FokI-dCas9 mediates high-fidelity genome editing in pigs[J]. Xenotra nsplantation, 2020, 27(1):e12551. |