China Swine Industry ›› 2025, Vol. 20 ›› Issue (2): 35-50.doi: 10.16174/j.issn.1673-4645.2025.02.003
• Special Report • Previous Articles Next Articles
CLC Number:
[1] 王佳昊, 王月, 吴添文, 等. 基因组编辑技术加速猪育种进程[J]. 中国猪业, 2024, 19(2):35-42. WANG JH, WANG Y, WU TW, et al. Genome editing technology accelerates pig breeding[J]. China Swine Industry, 2024, 19(2):35-42. [2] FAN Z, LIU Z, XU K, et al. Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production[J]. Science China Life Sciences, 2021, 65(2):362-375. [3] KRASNOVA OA, KAZANTSEVA NP, KUDRIN MR, et al. Productive qualities of hybrid pigs[J]. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2020, 11(14):1-9. [4] 张永前, 王儒梁, 杨松柏, 等. 节粮型种猪选育方法及实践[J]. 猪业科学, 2024, 41(10):40-43. ZHANG YQ, WANG RL, YANG SB, et al. Breeding method and practice of grain-saving breeding pig[J]. Swine Industry Science, 2024, 41(10):40-43. [5] COHEN SN, CHANG AC, BOYER HW, et al. Construction of biologically functional bacterial plasmids in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11):3240-3244. [6] KIM YG, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3):1156-1160. [7] CONG L, ANN RAN F, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. [8] TU CF, CHUANG C, YANG TS. The application of new breeding technology based on gene editing in pig industry—a review[J]. Animal Bioscience, 2022, 35(6):791-803. [9] VERMA PJ, SUMER H, LIU J. Applications of genome modulation and editing[M]. New York: Humana Press, 2022. [10] ROZENBERG I, MOSES E, HAREL I. CRISPR-Cas9 genome editing in Nothobranchius furzeri for gene knockout and knock-in[J]. Cold Spring Harbor Protocols, 2023, 2023(2):90-99. [11] DONG OX, YU S, JAIN R, et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9[J]. Nature Communications, 2020, 11(1):1178. [12] QIN L, LI JY, WANG QQ, et al. High-efficient and precise base editing of C?G to T?A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(1):45-56. [13] FU YW, DAI XY, WANG WT, et al. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing[J]. Nucleic Acids Research, 2021, 49(2):969-985. [14] SCHERER S, DAVIS RW. Replacement of chromosome segments with altered DNA sequences constructed in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10):4951-4955. [15] GAJ T, GERSBACH CA, BARBAS CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnology, 2013, 31(7):397-405. [16] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [17] MALI P, YANG LH, ESVELT KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [18] KOMOR AC, KIM YB, PACKER MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424. [19] URNOV FD, REBAR EJ, HOLMES MC, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9):636-646. [20] JO YI, KIM H, RAMAKRISHNA S. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology[J]. Cellular and Molecular Life Sciences, 2015, 72(20):3819-3830. [21] CHANDRASEGARAN S. Recent advances in the use of ZFN-mediated gene editing for human gene therapy[J]. Cell & Gene Therapy Insights, 2017, 3(1):33-41. [22] RAMIREZ CL, FOLEY JE, WRIGHT DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers[J]. Nature Methods, 2008, 5(5):374-375. [23] PATTANAYAK V, RAMIREZ CL, KEITH JOUNG J, et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J]. Nature Methods, 2011, 8(9):765-770. [24] BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959):1509-1512. [25] MOSCOU MJ, BOGDANOVE AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501. [26] KHAN Z, KHAN SH, MUBARIK MS, et al. Use of TALEs and TALEN technology for genetic improvement of plants[J]. Plant Molecular Biology Reporter, 2017, 35(1):1-19. [27] BOCH J, BONAS U. Xanthomonas AvrBs3 family-typeⅢ effectors: discovery and function[J]. Annual Review of Phytopathology, 2010, 48:419-436. [28] JOUNG JK, SANDER JD. TALENs: a widely applicable technology for targeted genome editing[J]. Nature Reviews Molecular Cell Biology, 2018, 14(1):49-55. [29] MILLER JC, TAN SY, QIAO GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2):143-148. [30] HUO ZJ, TU J, XU A, et al. Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing[J]. Stem Cell Research, 2019, 34:101360. [31] JUILLERAT A, DUBOIS G, VALTON J, et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases[J]. Nucleic Acids Research, 2014, 42(8):5390-5402. [32] HORVATH P, BARRANGOU R. CRISPR/Cas, the immune system of bacteria and Archaea[J]. Science, 2010, 327(5962):167-170. [33] JIANG FG, DOUDNA JA. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46:505-529. [34] CHEN HF, CHOI J, BAILEY S. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease[J]. Journal of Biological Chemistry, 2014, 289(19):13284-13294. [35] LIU Y, PINTO F, WAN XY, et al. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors[J]. Nature Communications, 2022, 13(1):1937. [36] LI Y, LI SY, WANG J, et al. CRISPR/cas systems towards next-generation biosensing[J]. Trends in Biotechnology, 2019, 37(7):730-743. [37] LI C, CHU W, GILL R A, et al. Computational tools and resources for CRISPR/Cas genome editing[J]. Genomics, Proteomics & Bioinformatics, 2022, 21(1):108-126. [38] FU R, FANG MH, XU K, et al. Generation of GGTA1-/-β2M-/-CIITA-/-pigs using CRISPR/Cas9 technology to alleviate xenogeneic immune reactions[J]. Transplantation, 2020, 104(8):1566-1573. [39] GAUDELLI NM, KOMOR AC, REES HA, et al. Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471. [40] YUAN HM, YU TT, WANG LY, et al. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs[J]. Cellular and Molecular Life Sciences, 2020, 77(4):719-733. [41] NELSON JW, RANDOLPH PB, SHEN SP, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nature Biotechnology, 2021, 40(3):402-410. [42] QIAN LL, TANG MX, YANG JZ, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 2015, 5:14435. [43] PAN JS, LIN ZS, WEN JC, et al. Application of the modified cytosine base-editing in the cultured cells of Bama minipig[J]. Biotechnology Letters, 2021, 43(9):1699-1714. [44] 曹随忠, 岳成鹤, 李西睿, 等. 锌指核酸酶技术制备肌肉生长抑制素基因敲除的五指山小型猪成纤维细胞[J]. 遗传, 2013, 35(6):778-785. CAO SZ, YUE CH, LI XR, et al. Production of myostatin gene knockout Wuzhishan miniature pig fibroblasts with zinc-finger nucleases[J]. Hereditas (Beijing), 2013, 35(6):778-785. [45] XIE SS, QIAN LL, CAI CB, et al. Safety evaluation of myostatin-edited Meishan pigs by whole genome resequencing analyses[J]. Czech Journal of Animal Science, 2019, 64(7):291-299. [46] SHEN YF, XU KX, YUAN ZM, et al. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer[J]. Journal of Translational Medicine, 2017, 15(1):224. [47] ZHU XX, ZHAN QM, WEI YY, et al. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Reproduction in Domestic Animals, 2020, 55(10):1314-1327. [48] LI RQ, ZENG W, MA M, et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Research, 2020, 29(1):149-163. [49] WANG KK, TANG XC, XIE ZC, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Research, 2017, 26(6):799-805. [50] ZHENG QT, LIN J, HUANG JJ, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45):9474-9482. [51] YOU WN, LI MJ, QI YL, et al. CRISPR/Cas9-mediated specific integration of Fat-1 and IGF-1 at the p Rosa26 locus[J]. Genes, 2021, 12(7):1027. [52] XIANG GH, REN JL, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cellular and Molecular Life Sciences, 2018, 75(24):4619-4628. [53] ZOU YL, LI ZY, ZOU YJ, et al. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects[J]. Biochemical and Biophysical Research Communications, 2018, 498(4):940-945. [54] LIN J, CAO CW, TAO C, et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes[J]. Journal of Molecular Cell Biology, 2017, 9(5):364-375. [55] LI Z, YANG HY, WANG Y, et al. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting[J]. Journal of Biomedical Research, 2017, 31(5):445-452. [56] WHITWORTH KM, ROWLAND RRR, EWEN CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016, 34(1):20-22. [57] SUN Q, XU H, AN TQ, et al. Recent progress in studies of porcine reproductive and respiratory syndrome virus 1 in China[J]. Viruses, 2023, 15(7):1528. [58] 赵娅娅, 袁利明, 华进联. 基因编辑技术在猪分子育种中的研究进展及发展趋势[J]. 农业生物技术学报, 2024, 32(8):1939-1948. ZHAO YY, YUAN LM, HUA JL. Research progress and development trend of gene editing technology in pig (Sus scrofa) molecular breeding[J]. Journal of Agricultural Biotechnology, 2024, 32(8):1939-1948. [59] YANG HQ, ZHANG J, ZHANG XW, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Research, 2018, 151:63-70. [60] WANG HT, SHEN LC, CHEN JY, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. International Journal of Biological Sciences, 2019, 15(9):1993-2005. [61] BURKARD C, LILLICO SG, REID E, et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathogens, 2017, 13(2):e1006206. [62] XIE ZC, JIAO HP, XIAO HN, et al. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J]. Antiviral Research, 2020, 174:104696. [63] QI CY, PANG DX, YANG K, et al. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing[J]. iScience, 2022, 25(10):105268. [64] LIU ZY, ZHANG MJ, HUANG PX, et al. Generation of APN-chimeric gene-edited pigs by CRISPR/Cas9-mediated knock-in strategy[J]. Gene, 2023, 851:147007. [65] XU K, ZHOU YR, MU YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9:e57132. [66] WU WJ, YIN YJ, HUANG J, et al. CRISPR/Cas9-meditated gene knockout in pigs proves that LGALS12 deficiency suppresses the proliferation and differentiation of porcine adipocytes[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2024, 1869(3):159424. [67] 郑虎, 高美娟, 杨化强. 基因编辑技术在猪遗传育种中的研究进展[J]. 畜牧与兽医, 2024, 56(1):129-139. ZHENG H, GAO MJ, YANG HQ. Progress in research on gene editing in pig breeding[J]. Animal Husbandry & Veterinary Medicine, 2024, 56(1):129-139. [68] GU H, ZHOU Y, YANG JZ, et al. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition[J]. The FASEB Journal, 2021, 35(2):e21308. [69] AKSOY MO, BILINSKA A, STACHOWIAK M, et al. Deciphering the role of the SREBF1 gene in the transcriptional regulation of porcine adipogenesis using CRISPR/Cas9 editing[J]. International Journal of Molecular Sciences, 2024, 25(23):12677. [70] LI MJ, TANG XC, YOU WN, et al. HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine[J]. Molecular Therapy - Nucleic Acids, 2021, 26:49-62. [71] ZHU XX, WEI YY, ZHAN QM, et al. CRISPR/Cas9-mediated biallelic knockout of IRX3 reduces the production and survival of somatic cell-cloned Bama minipigs[J]. Animals, 2020, 10(3):501. [72] SHI X, TANG T, LIN QY, et al. Efficient generation of bone morphogenetic protein 15-edited Yorkshire pigs using CRISPR/Cas9[J]. Biology of Reproduction, 2020, 103(5):1054-1068. [73] JIAO YF, BEI C, WANG YX, et al. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function[J]. International Journal of Biological Macromolecules, 2024, 267:131417. [74] CHEN PR, UH K, MONARCH K, et al. Inactivation of growth differentiation factor 9 blocks folliculogenesis in pigs[J]. Biology of Reproduction, 2023, 108(4):611-618. [75] JAVAID D, GANIE SY, HAJAM YA, et al. CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology[J]. Molecular Biology Reports, 2022, 49(12):12133-12150. [76] CHU C, YANG ZH, YANG JY, et al. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases[J]. BMC Biotechnology, 2019, 19(1):7. [77] GEURTS AM, COST GJ, FREYVERT Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939):433. [78] VISSCHER PM, GYNGELL C, YENGO L, et al. Heritable polygenic editing: the next frontier in genomic medicine?[J]. Nature, 2025, 637(8046):637-645. [79] PARKES M, CORTES A, VAN HEEL DA, et al. Genetic insights into common pathways and complex relationships among immune-mediated diseases[J]. Nature Reviews Genetics, 2013, 14(9):661-673. [80] SáNCHEZ CHM, BENNETT JB, WU SL, et al. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations[J]. BMC Biology, 2020, 18(1):50. [81] LEDFORD H. CRISPR gene editing in human embryos wreaks chromosomal mayhem[J]. Nature, 2020, 583(7814):17-18. [82] ALANIS-LOBATO G, ZOHREN J, MCCARTHY A, et al. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(22):e2004832117. [83] BEARTH A, OTTEN CD, COHEN AS. Consumers' perceptions and acceptance of genome editing in agriculture: insights from the United States of America and Switzerland[J]. Food Research International, 2024, 178:113982. [84] PIERGENTILI R, DEL RIO A, SIGNORE F, et al. CRISPR-cas and its wide-ranging applications: from human genome editing to environmental implications, technical limitations, hazards and bioethical issues[J]. Cells, 2021, 10(5):969. [85] 刘佳. CRISPR/Cas9基因编辑技术的生物伦理和法律问题[J]. 分子植物育种, 2024, 22(10):3188-3194. LIU J. Bioethical and legal issues of CRISPR/Cas9 gene editing technology[J]. Molecular Plant Breeding, 2024, 22(10):3188-3194. [86] 王立铭. 当人类生命被设计“基因编辑婴儿”背后的伦理[J]. 科学大观园, 2022(8):14-21. WANG LM. When human life is engineered: the ethics behind “gene-edited babies” [J]. Grand Garden of Science, 2022(8):14-21. [87] LEI L, LIAO F, TAN L, et al. LAMP coupled CRISPR-Cas12a module for rapid, sensitive and visual detection of porcine circovirus 2[J]. Animals, 2021, 12(18):241. [88] BI DF, YAO J, WANG Y, et al. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos[J]. Reproduction, 2021, 162(2):149-160. [89] LI ZC, ZENG F, MENG FM, et al. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids[J]. Biology of Reproduction, 2014, 90(5):93. [90] REDEL BK, PRATHER RS. Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases[J]. Toxicologic Pathology, 2016, 44(3):428-433. [91] YUAN TL, WU LL, LI SY, et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes[J]. Cell Discovery, 2024, 10(1):20. [92] QI YN, ZHANG Y, TIAN SJ, et al. An optimized prime editing system for efficient modification of the pig genome[J]. Science China Life Sciences, 2023, 66(12):2851-2861. [93] DOENCH JG, FUSI N, SULLENDER M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nature Biotechnology, 2016, 34(2):184-191. [94] RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/cas technology in pig-to-human xenotransplantation research[J]. International Journal of Molecular Sciences, 2021, 22(6):3196. [95] SINGH AK, GOERLICH CE, ZHANG TS, et al. Genetically engineered pig heart transplantation in non-human Primates[J]. Communications Medicine, 2025, 5(1):6. [96] 李霄, 曹薇薇, 余良. 异种肝移植的探索之路: 从科学研究走向临床应用[J]. 器官移植, 2024, 15(5):758-763. LI X, CAO WW, YU L. Exploratory road of liver xenotransplantation: from scientific research to clinical application[J]. Organ Transplantation, 2024, 15(5):758-763. [97] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982):393-401. [98] MARIGLIANO M, BERTERA S, GRUPILLO M, et al. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview[J]. Current Diabetes Reports, 2011, 11(5):402-412. [99] DENG JC, YANG L, WANG ZR, et al. Advance of genetically modified pigs in xeno-transplantation[J]. Frontiers in Cell and Developmental Biology, 2022, 10:1033197. [100] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. The New England Journal of Medicine, 2022, 386(20):1889-1898. [101] WANG W, HE W, RUAN Y, et al. First pig-to-human heart transplantation[J]. The Innovation, 2022, 3(2):100223. [102] NEWBY GA, YEN JS, WOODARD KJ, et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice[J]. Nature, 2021, 595(7866):295-302. [103] DA SILVA SANCHEZ A, PAUNOVSKA K, CRISTIAN A, et al. Treating cystic fibrosis with mRNA and CRISPR[J]. Human Gene Therapy, 2020, 31(17/18):940-955. [104] FRANGOUL H, ALTSHULER D, DOMENICA CAPPELLINI M, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. The New England Journal of Medicine, 2021, 384(3):252-260. [105] CHEN S, SUN H, MIAO K, et al. CRISPR-Cas9: from genome editing to cancer research[J]. International Journal of Biological Sciences, 2016, 12(12):1427-1436. [106] ZHANG Y, NADERI YEGANEH P, ZHANG HW, et al. Tumor editing suppresses innate and adaptive antitumor immunity and is reversed by inhibiting DNA methylation[J]. Nature Immunology, 2024, 25(10):1858-1870. [107] LIU B, SABER A, HAISMA HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment[J]. Drug Discovery Today, 2019, 24(4):955-970. [108] ZHOU W, YANG J, ZHANG Y, et al. Current landscape of gene‐editing technology in biomedicine: applications, advantages, challenges, and perspectives[J]. MedComm, 2021, 3(3):e155. [109] FANG YL, CHEN XG, GODBEY WT. Gene editing in regenerative medicine[M]. Principles of Regenerative Medicine, 2019:741-759. [110] GONG QW, SHA G, HAN XY, et al. Knockout of phosphatidate phosphohydrolase genes confers broad-spectrum disease resistance in plants[J]. Plant Biotechnology Journal, 2025, 23(1):72-74. [111] MOCZEK AP, SEARS KE, STOLLEWERK A, et al. The significance and scope of evolutionary developmental biology: a vision for the 21st century[J]. Evolution & Development, 2015, 17(3):198-219. [112] WU ST, KYAW H, TONG ZJ, et al. A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants[J]. The Crop Journal, 2024, 12(2):569-582. [113] GAO HX, PEI XY, SONG XS, et al. Application and development of CRISPR technology in the secondary metabolic pathway of the active ingredients of phytopharmaceuticals[J]. Frontiers in Plant Science, 2025, 15:1477894. [114] MA J, LYU Y, LIU X, et al. Engineered probiotics[J]. Microbial Cell Factories, 2022, 21(1):7. [115] TAN X, LETENDRE JH, COLLINS JJ, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4):881-898. [116] SHANMUGAM S, NGO HH, WU YR. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: a review[J]. Renewable Energy, 2020, 149:1107-1119. |
[1] | . [J]. China Swine Industry, 2025, 20(2): 5-14. |
[2] | . [J]. China Swine Industry, 2025, 20(2): 15-22. |
[3] | . [J]. China Swine Industry, 2025, 20(2): 23-34. |
[4] | . [J]. China Swine Industry, 2025, 20(2): 51-62. |
[5] | . [J]. China Swine Industry, 2025, 20(2): 63-74. |
[6] | . [J]. China Swine Industry, 2025, 20(2): 93-100. |
[7] | SHEN Xuelin, YAO Man, LI Aiping, HU Yanyan, YU Qiong, FAN Guangjian, XIA Xianlin. Study on the Effect of Hybridization of Lean Pig Combination [J]. China Swine Industry, 2021, 16(6): 36-41. |
[8] | HU Mingpeng, WU Xulong, TANG Jie, YANG Min, ZHOU Chenlu, ZHONG Jiawen, LI Hu, CHI Haomin, ZHENG Yusong. Research Survey and Control Measures of New Epidemic Porcine Circovirus Type 3 [J]. China Swine Industry, 2021, 16(5): 63-66. |
[9] | ZHENG Ruiqiang, DING Nengshui, HU Yan, JI Huayuan. Research on the Development Dilemma and Strategy Optimization of Jiangxi Live Pig Breeding Industry——Based on the Investigation of 30 Enterprises of Pig Breeding [J]. China Swine Industry, 2021, 16(5): 24-29. |
[10] | AO Weiping, LIU Yandong, YANG Jianxin, LI Yuqin. Analysis on the Effectiveness in Carcass Character of Hybridization about Bama Miniature Pigs [J]. China Swine Industry, 2021, 16(4): 89-92. |
[11] | CHI Lan, XUE Zhong, ZHU Guangqin. Analysis on the Feeding and Management Techniques of Different Pig Herds in Modern Pig Farms [J]. China Swine Industry, 2021, 16(4): 46-50. |
[12] | REN Xiaolin, WANG Qing, XU Min, HU Jianhe, XU Yanzhao. Study on the Application of Soluble Matter from Corn Distiller Dried Soluble in the Diet of Fattening Pigs [J]. China Swine Industry, 2021, 16(4): 39-41. |
[13] | WANG Yali, ZHU Tong, HE Jiwu, SHAO Shujuan, HE Shujun, TENG Caifeng. Experimental Report on Emission Reduction Effect of Feces From Compensatory Growth Pigs [J]. China Swine Industry, 2021, 16(3): 75-78. |
[14] | ZHAO Yu, QU Yonggang. The Characteristics of Foot-and-mouth Disease and the Establishment of Scaled Pig Farm Biosecurity System [J]. China Swine Industry, 2021, 16(2): 69-73. |
[15] | ZHANG Ting, LIANG Yue, ZHANG Xin, YANG Zaibin. Study on Effect of Whole Wheat Silage Feeding Finishing Pigs [J]. China Swine Industry, 2021, 16(2): 48-52. |
|