中国猪业 ›› 2021, Vol. 16 ›› Issue (4): 51-56.doi: 10.16174/j.issn.1673-4645.2021.04.011

• 猪病防控 • 上一篇    下一篇

非洲猪瘟病毒复制相关基因E165R启动子预测及其甲基化分析

张彦兵1, 张石磊1, 刘良波1, 谢全亮2, 孙延鸣1,*   

  1. 1石河子大学动物科技学院,新疆石河子 832003;
    2石河子大学生命科学学院,新疆石河子 832003
  • 收稿日期:2021-05-30 出版日期:2021-08-25 发布日期:2021-09-16
  • 通讯作者: *孙延鸣(1965-),男,教授,主要从事临床兽医学方面的研究
  • 作者简介:张彦兵(1991-),男,副教授,主要从事预防兽医学方面的研究
  • 基金资助:
    石河子大学高层次人才科研启动项目(RCZK202043)

Bioinformatics Analysis and Methylation Region Prediction of African Swine Fever Virus E165R Gene Promoter

ZHANG Yanbing1, ZHANG Shilei1, LIU Liangbo1, XIE Quanliang2, SUN Yanming1,*   

  1. 1College of Animal Science and Technology, Shihezi University, Shihezi 832003, China;
    2College of Life Science, Shihezi University, Shihezi 832003, China
  • Received:2021-05-30 Online:2021-08-25 Published:2021-09-16

摘要: ASF(非洲猪瘟)是由ASFV(非洲猪瘟病毒)引起猪的一种烈性、急性、出血性传染病。ASFV基因组为双股线性DNA(170~190 kb),可编码150~200种病毒,已报道ASFV的E165R基因与其复制相关,E165R编码的dUTPase蛋白结构已被解析。本文旨在利用软件和数据库对基因E165R的启动子进行生物信息学分析,进而分析其甲基化。首先,针对不同毒株的E165R启动子序列进行同源进化树分析,结果显示E165R启动子序列高度保守;然后,利用软件和数据库分析E165R启动子活性区域和转录因子,发现E165R启动子含有3个活性区域,启动子含有Sp1、c-Jun和C/EBPalp等6种转录因子,在Sp1、Oct-1和C/EBPalp结合序列上含有cg甲基化位点;最后,成功预测E165R启动子甲基化区域并设计了甲基化检测引物。本研究,首次从DNA甲基化角度出发,对ASFV的E165R基因启动子进行生物信息学分析,为下一步研究DNA甲基化影响ASFV的复制打下基础。

关键词: ASFV, E165R, 生物信息, 启动子, DNA甲基化

Abstract: ASF (African Swine Fever) is a severe, a cute and hemorrhagic infectious pigs' disease caused by ASFV (African Swine Fever Virus). The ASFV genome is double-stranded linear DNA (170~190 kb), which can encode more than 150~200 viral proteins. It has been reported that the E165R gene of ASFV was related to its replication, and the structure of the protein dUTPase encoded by E165R. This study aimed to investigate bioinformatics of the promoter of gene E165R, and then analyzed its promoter methylation region. The E165R promoter sequence of different ASFV strains was highly conserved. Through the prediction of promoters, such as activity analysis software and methylation software, we observed that the E165R promoter contains 6 transcription binding factors such as Sp1, c-Jun and C/EBPalp. Importantly, cg sites cover on binding sequences of Sp1, Oct-1 and C/EBPalp. We successfully predicted methylation region of E165R promoter. Methylation detection primer of E165R promoter was also designed. In this study, the ASFV E165R gene promoter was carried out for the first time from DNA methylation. It could be founded for the next step to study the influence of DNA methylation about ASFV replication.

Key words: ASFV, E165R, bioinformatics, promoter, DNA methylation

中图分类号:  S828;S852.65+1

[1] 吴竞, 王西西, 吴映彤, 等. 非洲猪瘟病毒p30基因的原核表达及间接ELISA抗体检测方法的建立[J]. 中国畜牧兽医, 2018, 45(12): 3555-3562.
[2] Gaudreault NN, Madden DW, Wilson WC, et al.African swine fever virus: an emerging DNA arbovirus[J]. Frontiers in Veterinary Science, 2020(7):215.
[3] 吴海涛, 成大荣, 吴萌, 等. 非洲猪瘟病毒胶体金免疫层析试纸条的研制[J]. 黑龙江畜牧兽医, 2018(17):126-128,238.
[4] Wang T, Sun Y, Huang SJ, et al.Multifaceted immune responses to African swine fever virus: implications for vaccine development[J]. Veterinary Microbiology, 2020, 249. doi:10.1016/j.vetmic.2020.108832.
[5] Zhang YB, Li H, Xiang X, et al.Identification of DNMT3B2 as the predominant isoform of DNMT3B in porcine alveolar macrophages and its involvement in LPS-stimulated TNF-α expression[J]. Genes and Development, 2020, 11(9). doi: 10.3390/genes11091065.
[6] Zhao D, Liu R, Zhang X, et al.Replication and virulence in pigs of the first African swine fever virus isolated in China[J]. Emerging Microbes & Infections, 2019, 8(1):438-447.
[7] Knudsen S.Promoter2.0: for the recognition of PolII promoter sequences[J]. Bioinformatics(Oxford, England), 1999, 15(5):356-361.
[8] Li LC, Dahiya R.MethPrimer: designing primers for methylation PCRs[J]. Bioinformatics (Oxford, England), 2002, 18(11):1427-1431.
[9] Kumaki Y, Oda M, Okano M.QUMA: quantification tool for methylation analysis[J]. Nucleic Acids Research, 2008, 36(Web Server issue):170-175.
[10] Takamatsu HH, Denyer MS, Lacasta A, et al.Cellular immunity in ASFV responses[J]. Virus Research, 2013, 173(1):110-121.
[11] Wang XX, Wu J, Wu YT, et al.Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications, 2018, 506(3):437-443.
[12] Oliveira VL, Almeida SC, Soares HR, et al.A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Archives of Virology, 2011, 156(4):597-609.
[13] Liang R, Wang G, Zhang D, et al.Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development[J]. Journal of Biological Chemistry, 2020. doi:10.1074/JBC.RA120.014005.
[14] Zhou ZY, Li A, Wang LG, et al.DNA methylation signatures of long intergenic noncoding RNAs in porcine adipose and muscle tissues[J]. Scientific Reports, 2015, 5. doi:10.1038/srep15435.
[15] Jin J, Xu H, Wu R, et al.Aberrant DNA methylation profile of hepatitis B virus infection[J]. Journal of Medical Virology, 2019, 91(1):81-92.
[16] Guo R, Zhang Y, Teng M, et al.DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression[J]. Nature Microbiology, 2020, 5(8):1051-1063.
[17] Torabi B, Flashner S, Beishline K, et al.Caspase cleavage of transcription factor Sp1 enhances apoptosis[J]. Apoptosis : An International Journal on Programmed Cell Death, 2018, 23(1):65-78.
[18] Gao Y, Chang MX, Sun BJ, et al.TRAIL in the mandarin fish Siniperca chuatsi: gene and its apoptotic effect in HeLa cells[J]. Fish & Shellfish Immunology, 2008, 24(1):55-66.
[1] 康永松, 余声春, 杨开山. 非洲猪瘟疫情形势下病死猪处理技术模式的探讨[J]. 中国猪业, 2021, 16(3): 79-82.
[2] 冯会利,王海棚,赵文斌,刘守铉,银岭,朱金凤. 探析非洲猪瘟的传播途径[J]. 中国猪业, 2020, 15(6): 53-58,64.
[3] 康亚男,张小波,刘涛,张倩,张英,朱秀同,赵玉龙,吴雅清,郑朝朝,刘博. 非洲猪瘟病毒及诊断技术研究进展[J]. 中国猪业, 2019, 14(8): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!