中国猪业 ›› 2021, Vol. 16 ›› Issue (4): 51-56.doi: 10.16174/j.issn.1673-4645.2021.04.011
张彦兵1, 张石磊1, 刘良波1, 谢全亮2, 孙延鸣1,*
ZHANG Yanbing1, ZHANG Shilei1, LIU Liangbo1, XIE Quanliang2, SUN Yanming1,*
摘要: ASF(非洲猪瘟)是由ASFV(非洲猪瘟病毒)引起猪的一种烈性、急性、出血性传染病。ASFV基因组为双股线性DNA(170~190 kb),可编码150~200种病毒,已报道ASFV的E165R基因与其复制相关,E165R编码的dUTPase蛋白结构已被解析。本文旨在利用软件和数据库对基因E165R的启动子进行生物信息学分析,进而分析其甲基化。首先,针对不同毒株的E165R启动子序列进行同源进化树分析,结果显示E165R启动子序列高度保守;然后,利用软件和数据库分析E165R启动子活性区域和转录因子,发现E165R启动子含有3个活性区域,启动子含有Sp1、c-Jun和C/EBPalp等6种转录因子,在Sp1、Oct-1和C/EBPalp结合序列上含有cg甲基化位点;最后,成功预测E165R启动子甲基化区域并设计了甲基化检测引物。本研究,首次从DNA甲基化角度出发,对ASFV的E165R基因启动子进行生物信息学分析,为下一步研究DNA甲基化影响ASFV的复制打下基础。
中图分类号: S828;S852.65+1
[1] 吴竞, 王西西, 吴映彤, 等. 非洲猪瘟病毒p30基因的原核表达及间接ELISA抗体检测方法的建立[J]. 中国畜牧兽医, 2018, 45(12): 3555-3562. [2] Gaudreault NN, Madden DW, Wilson WC, et al.African swine fever virus: an emerging DNA arbovirus[J]. Frontiers in Veterinary Science, 2020(7):215. [3] 吴海涛, 成大荣, 吴萌, 等. 非洲猪瘟病毒胶体金免疫层析试纸条的研制[J]. 黑龙江畜牧兽医, 2018(17):126-128,238. [4] Wang T, Sun Y, Huang SJ, et al.Multifaceted immune responses to African swine fever virus: implications for vaccine development[J]. Veterinary Microbiology, 2020, 249. doi:10.1016/j.vetmic.2020.108832. [5] Zhang YB, Li H, Xiang X, et al.Identification of DNMT3B2 as the predominant isoform of DNMT3B in porcine alveolar macrophages and its involvement in LPS-stimulated TNF-α expression[J]. Genes and Development, 2020, 11(9). doi: 10.3390/genes11091065. [6] Zhao D, Liu R, Zhang X, et al.Replication and virulence in pigs of the first African swine fever virus isolated in China[J]. Emerging Microbes & Infections, 2019, 8(1):438-447. [7] Knudsen S.Promoter2.0: for the recognition of PolII promoter sequences[J]. Bioinformatics(Oxford, England), 1999, 15(5):356-361. [8] Li LC, Dahiya R.MethPrimer: designing primers for methylation PCRs[J]. Bioinformatics (Oxford, England), 2002, 18(11):1427-1431. [9] Kumaki Y, Oda M, Okano M.QUMA: quantification tool for methylation analysis[J]. Nucleic Acids Research, 2008, 36(Web Server issue):170-175. [10] Takamatsu HH, Denyer MS, Lacasta A, et al.Cellular immunity in ASFV responses[J]. Virus Research, 2013, 173(1):110-121. [11] Wang XX, Wu J, Wu YT, et al.Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochemical and Biophysical Research Communications, 2018, 506(3):437-443. [12] Oliveira VL, Almeida SC, Soares HR, et al.A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Archives of Virology, 2011, 156(4):597-609. [13] Liang R, Wang G, Zhang D, et al.Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development[J]. Journal of Biological Chemistry, 2020. doi:10.1074/JBC.RA120.014005. [14] Zhou ZY, Li A, Wang LG, et al.DNA methylation signatures of long intergenic noncoding RNAs in porcine adipose and muscle tissues[J]. Scientific Reports, 2015, 5. doi:10.1038/srep15435. [15] Jin J, Xu H, Wu R, et al.Aberrant DNA methylation profile of hepatitis B virus infection[J]. Journal of Medical Virology, 2019, 91(1):81-92. [16] Guo R, Zhang Y, Teng M, et al.DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression[J]. Nature Microbiology, 2020, 5(8):1051-1063. [17] Torabi B, Flashner S, Beishline K, et al.Caspase cleavage of transcription factor Sp1 enhances apoptosis[J]. Apoptosis : An International Journal on Programmed Cell Death, 2018, 23(1):65-78. [18] Gao Y, Chang MX, Sun BJ, et al.TRAIL in the mandarin fish Siniperca chuatsi: gene and its apoptotic effect in HeLa cells[J]. Fish & Shellfish Immunology, 2008, 24(1):55-66. |
[1] | 康永松, 余声春, 杨开山. 非洲猪瘟疫情形势下病死猪处理技术模式的探讨[J]. 中国猪业, 2021, 16(3): 79-82. |
[2] | 冯会利,王海棚,赵文斌,刘守铉,银岭,朱金凤. 探析非洲猪瘟的传播途径[J]. 中国猪业, 2020, 15(6): 53-58,64. |
[3] | 康亚男,张小波,刘涛,张倩,张英,朱秀同,赵玉龙,吴雅清,郑朝朝,刘博. 非洲猪瘟病毒及诊断技术研究进展[J]. 中国猪业, 2019, 14(8): 86-88. |
|