中国猪业 ›› 2023, Vol. 18 ›› Issue (6): 113-117.doi: 10.16174/j.issn.1673-4645.2023.06.025

• 猪病防控 • 上一篇    

畜禽舍常用新型消毒产品及研究进展

麦金辉,张琳玉,王江萍,李鑫,谢小红   

  • 出版日期:2023-12-25 发布日期:2024-01-02

  • Online:2023-12-25 Published:2024-01-02

摘要: 随着畜牧行业的现代化、集约化、规模化发展,伴随动物疫病的传播加快,如非洲猪瘟、猪流行性腹泻病等疫病。畜禽疾病防重于治、未病先防的养殖理念逐渐深入人心。畜禽舍的消毒管理成为养殖行业的一个常态化的工作。目前市面上关于畜禽舍消毒的产品琳琅满目,本文通过对市面上畜禽舍常见的消毒产品进行比较分析,阐明常见消毒产品的一般性能、适用范围、作用机制以及特点等,以供养殖行业对消毒产品的选择进行参考。

关键词: 畜禽舍;消毒剂;病原微生物;动物疫病

[1] 朱佳文, 刘逍, 叶思齐, 等. 化学消毒剂对非洲猪瘟病毒的作用效果与应用建议[J]. 黑龙江畜牧兽医, 2021(19):21-26.. [2] Kalmar ID, Cay AB, Tignon M. Sensitivity of African swine fever virus (ASFV) to heat, alkalinity and peroxide treatment in presence or absence of porcine plasma[J]. Veterinary Microbiology, 2018, 219(6):144-149. [3] 董政波, 田俊. 养鸡场常用消毒剂及科学使用[J]. 中国动物保健 ,2021, 23(8):94,97. [4] 李荣体. 常用消毒药的特点[J]. 河南畜牧兽医, 2005(7):23-24. [5] 谢洪涛, 王红莲. 消毒剂在规模化养殖场中的应用[J]. 湖北畜牧兽医, 2019, 40(8):21-23. [6] 沈慧. 几种兽用消毒药的用法[J]. 中国兽药杂志, 2005(3):52. [7] Juszkiewicz M, Walczak M, Mazur-Panasiuk N, et al. Effectiveness of chemical compounds used against African swine fever virus in commercial available disinfectants[J]. Pathogens, 2020, 9(11):878. doi:10.3390/pathogens9110878. [8] 彭国瑞, 彭小兵, 蒋玉文, 等. 兽用消毒药的种类及其在养殖场中的合理使用[J]. 中国兽药杂志, 2013, 47(2):67-69. [9] 刘亚彬. 非洲猪瘟疫情压力下消毒剂的选择[J]. 养猪, 2020(1):73-78. [10] 马嵋, 吴春梅, 张燕. 过氧化氢与过氧乙酸两种消毒剂在生物安全实验室终末消毒效果比较[J]. 大众科技, 2021, 23(6):42-45. [11] 姚侃. 规模化猪场常用化学消毒剂的应用[J]. 国外畜牧学(猪与禽), 2021, 41(4):76-77. [12] 顾宪锐, 金东航. 常用消毒药高锰酸钾在兽医临床诊疗工作中的应用[J]. 吉林畜牧兽医, 2022, 43(2):101-102. [13] 完玛塔. 畜禽养殖场消毒药合理使用[J]. 中国畜禽种业, 2020, 16(8):58. [14] 王梅. 二氧化氯消毒应用的研究进展[J]. 职业与健康, 2022, 38(9):1283-1286. [15] 刘宇鹤, 吴明松, 周秀艳, 等. 二氧化氯水消毒副产物的生成与消减研究进展[J]. 中国消毒学杂志, 2019, 36(5):380-383. [16] 陈志勇, 宋金武, 张丽蓉, 等. 二氧化氯消毒剂对医院常见感染菌的杀灭效果观察[J]. 中国医疗器械信息, 2018, 24(21):39-40,43. [17] Morino H, Futatsukame M, Miura T, et al. Effect of extremely low-concentration gaseous chlorine dioxide against surface Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii in wet conditions on glass dishes[J]. BMC Research Notes, 2020, 13(1):69. [18] 崔树玉, 田忠梅. 低温蒸汽甲醛灭菌技术及其发展[J]. 中国消毒学杂志, 2015, 32(2):162-164. [19] 王胜, 吴春阳, 吴玉龙, 等. 醛类消毒剂的概述[J]. 猪业科学, 2020, 37(7):124-125. [20] 佟颖, 安伟, 邓小虹. 醛类消毒剂及其发展[J]. 中国消毒学杂志, 2011, 28(5):611-612. [21] Li H, Gao S, Zheng Z, et al. Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte-gold nanoparticle films on Fe304-silica core-shell microspheres [J]. Catalysis Science & Technology, 2011,1(7):1194-1201. [22] Niu Z, Zhang S, Sun Y, et al. Controllable synthesis of Ni/Si0 2 hollow spheres and their excellent catalytic performance in 4-nitrophenol reduction[J]. Dalton Transactions, 2014, 43(44):16911-16918. [23] Cui ZM, Chen Z, Cao CY, et al. Coating with mesoporous silica remarkably enhances the stability of the highly active yet fragile flower-like Mg0 catalyst for dimethyl carbonate synthesis[J]. Chemical Communications, 2013, 49(54):6093-6095. [24] Xu Y, Chen L, Wang X, et al. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications[J]. Nanoscale, 2015, 7(24):10559-10583. [25] Huang CJ, Chen YS, Chang Y. Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes[J]. ACS applied Materials & Interfaces, 2015, 7(4):2415-2423. [26] Quiros J, Borges JP, Boltes K, et al. Antimicrobial electrospun silver-, copper- and zinc- doped polyvinylpyrrolidone nanofibers[J]. Journal of Hazardous Materials, 2015, 299: 298-305. [27] Tan P, Li YH, Liu XQ, et al. Core-shell AgCl@SiO2 nanoparticles: Ag(I)- based antibacterial materials with enhanced stability [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6):3268-3275. [28] Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12(5):1531-1551 [29] Khalandi B, Asadi N, Milani M, et al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria[J]. Drug Research, 2017, 67(2):70-76. [30] Tang SH, Zheng J. Antibacterial activity of silver nanoparticles: structural effects[J]. Advanced Healthcare Materials, 2018, 7(13). doi: 10.1002/adhm.201701503. [31] Li HY, Gao YC, Li CX, et al. A comparative study of the antibacterial mechanisms of silver ion and silver nanoparticles by Fourier transform infrared spectroscopy[J]. Vibrational Spectroscopy, 2016, 85:112-121. [32] Maleki A, Movahed H, Paydar R. Design and development of a novel cellulose/γ-Fe2O 3/Ag nanocomposite: a potential green catalyst and antibacterial agent[J]. RSC Advances, 2016, 6(17):13657-13665. [33] Shome A, Dutta S, Maiti S, et al. In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites [J]. Soft Matter, 2011, 7(6):3011-3022. [34] 魏亚楠, 马新冉, 齐珈俪, 等. 纳米银/聚乙烯醇复合物的生物合成及其对6种水产病原菌的抑菌活性[J]. 复合材料学报, 2021, 38(11):3808-3817. [35] 刘小莉, 图尔荪阿依·图尔贡, 王帆, 等. 纳米银对革兰氏阴性水产品腐败菌的抑制作用[J]. 中国食品学报, 2019, 19(11):186-190. [36] 封琦, 孟娜, 赵言世, 等. 绿色合成纳米银材料的制备及其对水产病原菌的抗菌效果测定[J]. 水产学报, 2019, 43(4):1201-1208.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!