中国猪业 ›› 2024, Vol. 19 ›› Issue (3): 24-33.doi: 10.16174/j.issn.1673-4645.2024.03.003

• 专题报道 • 上一篇    下一篇

猪舍环境精准控制模型及其优化算法

周昕,冯钧哲,徐杏,谢传奇,吴越,李向军,刘凯歌,楼喜中,王星博,周卫东   

  • 出版日期:2024-07-15 发布日期:2024-06-25

  • Online:2024-07-15 Published:2024-06-25

摘要: 高密度和密闭饲养是现代规模化生猪养殖业的主要特征之一,通过精准环境控制维持猪舍稳定、舒适和符合生猪生物学特性的小气候环境,是生猪养殖获得更高生产性能和饲料转化效率、更好猪群健康、更优畜产品质量和更高生产效益的重要基础。规模猪场猪舍环境影响因素多而复杂,基于数学模型驱动和控制设备运转是实现精准智能环境控制的主要方式。本文围绕影响猪生长、健康的主要环境因素,综述了猪舍环境的控制策略、模型及其优化算法,以期为猪舍环境精准控制技术与智能环控装备研发提供理论依据。

关键词: 生猪, 猪舍, 养殖环境, 精准控制, 模型, 算法, 养猪设备, 智能装备

中图分类号:  S828.9;TP391.41

[1] DA FONSECA AC, VANELLI K, SANTOS SC, et al. Impactson performance of growing-finishing pigs under heat stress conditions: a meta-analysis[J]. Veterinary Research Communications,2019, 43(1):37-43. [2] 郭阳阳, 杜书增, 乔永亮, 等. 深度学习在家畜智慧养殖中研究应用进展[J]. 智慧农业(中英文), 2023, 5(1):52-65. GUO YY, DU SZ, QIAO YL, et al. Advances in the applications of deep learning technology for livestock smart farming [J]. Smart Agriculture, 2023, 5(1):52-65. [3] 高航, 姜丽丽, 王军军, 等. 热应激对猪生长性能、行为、生理的影响及调控措施[J]. 中国畜牧杂志, 2017, 53(11):11-15,47. GAO H, JIANG LL, WANG JJ, et al. Effects of heat stress on growth performance, behavior, and physiology in pigs and regulation measures[J]. Chinese Journal of Animal Science, 2017, 53(11):11-15,47. [4] 柴捷, 张廷焕, 王金勇, 等. 湿热环境对生长育肥猪生长性能的影响[J]. 家畜生态学报, 2022, 43(3):25-29. CHAI J, ZHANG TH, WANG JY, et al. Effect of hot-humid environment on growth performance of growing pigs [J].Journal of Domestic Animal Ecology, 2022, 43(3):25-29. [5] 李元凤, 何健, 敖翔, 等. 不同添加剂对夏季热应激母猪繁殖性能和仔猪生长性能的影响[J]. 中国畜牧杂志, 2019, 55(6):82-86. LI YF, HE J, AO X, et al. Effects of different additives on reproductive performance of sows and growth performance of piglets under heat stress in summer[J]. Chinese Journal of Animal Science, 2019, 55(6):82-86. [6] 陶秀萍, 董红敏. 低温对仔猪生产的影响及其机制[J]. 农业工程学报, 1997, 13(S1):60-64. TAO XP, DONG HM. Effect of low temperature on piglet production and its mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 1997, 13(S1):60-64. [7] CURTIS SE. Responses of the piglet to perinatal stressors[J]. Journal of Animal Science, 1974, 38(5):1031-1036. [8] 殷延华. 福利养殖对猪生产性能的影响[J]. 中国猪业, 2022, 17(3):44-47,50. YIN YH. The impact of welfare breeding on pig productionperformance[J]. China Swine Industry, 2022, 17(3):44-47,50 [9] 张双玲, 陶志平, 陈洪林. 环境温度对“版纳小耳猪”种母猪繁殖性能的影响[J]. 养殖技术顾问, 2011(2):190-191. ZHANG SL, TAO ZP, CHEN HL. Effect of environmental temperature on reproductive performance of "Banna Small Ear Pig" sow [J]. Technical Advisor for Animal Husbandry, 2011(2):190-191. [10] 司徒金水, 朱晓彤, 江青艳, 等. 环境因素对猪生产性能的影响[J]. 家畜生态学报, 2021, 42(8):8-14. SITU JS, ZHU XT, JIANG QY, et al. Influence of environmental factors on pig performance [J]. Journal of Domestic Animal Ecology, 2021, 42(8):8-14. [11] 汪开英, 苗香雯, 崔绍荣, 等. 猪舍环境温湿度对育成猪的生理及生产指标的影响[J]. 农业工程学报, 2002, 18(1):99-102,7-6. WANG KY, MIAO XW, CUI SR, et al. Effects of ambient temperature and relative humidity on physiological parameters and performance of growing pigs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18 (1):99-102,7-6. [12] 安木曼, 门明建, 杨光. 冬春季猪呼吸道疾病的发病原因及防控措施[J]. 畜牧兽医杂志, 2017, 36(3):116-118. AN MM, MEN MJ, YANG G. Causes and control measures of swine respiratory diseases in winter-spring[J]. Journal of Animal Science and Veterinary Medicine, 2017, 36 (3):116-118. [13] 徐杏, 肖华, 周昕, 等. 畜禽场恶臭VOCs 的产生及防控技术进展[J]. 环境工程, 2020, 38(8):180-187. XU X, XIAO H, ZHOU X, et al. Progress in generation, prevention and control of odorous vocs from livestock and poultry farms[J]. Environmental Engineering, 2020, 38(8):180-187. [14] 崔嘉, 杨新宇, 李楠, 等. 氨气影响动物健康和生产性能的机理[J]. 畜牧兽医学报, 2021, 52(2):311-321. CUI J, YANG XY, LI N, et al. Mechanism of ammonia affecting animal health and productive performance [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2):311-321. [15] 曹进, 张峥. 封闭猪场内氨气对猪群生产性能的影响及控制试验[J]. 养猪, 2003(4):42-44. CAO J, ZHANG Z. Effect of ammonia gas on production performance of pigs in closed pig farms and its control experiment[J]. Swine Production, 2003(4):42-44. [16] 陈代文. 封闭猪舍有毒有害气体及其控制措施[J]. 四川农业大学学报, 1993, 11(3):463-467. CHEN DW. The noxious and unpleasant atmospheric gases and their controls in swine confinement buildings[J]. Journal of Sichuan Agricultural University, 1993, 11(3):463-467. [17] 周丹, 刁亚萍, 高云, 等. 猪舍内CO2 的排放研究进展[J]. 中国农业科学, 2018, 51(16):3201-3213. ZHOU D, DIAO YP, GAO Y, et al. Research review on CO2 production in pig house[J]. Scientia Agricultura Sinica, 2018,51(16):3201-3213. [18] 周体阳. 养猪场有害气体的危害及控制措施[J]. 中兽医学杂志,2014(11):68-69. ZHOU TY. Harm and control measures of harmful gases in pig farms [J]. Chinese Journal of Traditional Veterinary Science,2014(11):68-69. [19] KWON KS, LEE IB, HWANG HS, et al. Measurement and analysis of dust concentration in a fattening pig house considering respiratory welfare of pig farmers[J]. Journal of the Korean Society of Agricultural Engineers, 2013, 55 (5):25-35. [20] DONHAM KJ, POPENDORF W, PALMGREN U, et al. Characterization of dusts collected from swine confinement buildings[J]. American Journal of Industrial Medicine, 1986,10(3):294-297. [21] 张娜娜, 李尚, 于国升, 等. 环境条件对猪生产性能的影响[J].饲料博览, 2016(12):9-11. ZHANG NN, LI S, YU GS, et al. Effects of environmental conditions on pig production performance[J]. Feed Review, 2016(12):9-11. [22] QI Q, DENG SM. Multivariable control of indoor air temperature and humidity in a direct expansion (DX) air conditioning (A/C) system[J]. Building and Environment, 2009, 44(8):1659-1667. [23] 王朝元. 舍饲散养自然通风奶牛舍氨气排放规律与模拟研究[D]. 北京: 中国农业大学, 2006. WANG CY. Study on ammonia emission law and simulation of natural ventilation dairy cows in house feeding[D]. Beijing:China Agricultural University, 2006. [24] 李立峰, 武佩, 麻硕士, 等. 基于组态软件和模糊控制的分娩母猪舍环境监控系统[J]. 农业工程学报, 2011, 27(6):231-236. LI LF, WU P, MA SS, et al. Monitoring and controlling system for delivery sow house environment based on configuration software and fuzzy control [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):231-236. [25] 宣传忠, 武佩, 马彦华, 等. 基于自适应模糊神经网络的畜禽舍环境控制系统的研究[J]. 内蒙古大学学报(自然科学版), 2013,44(4):397-403. XUAN CZ, WU P, MA YH, et al. A study on controlling system for the animal housing environment based on fuzzy neural network[J]. Journal of Inner Mongolia University (Natural Science Edition), 2013, 44(4):397-403. [26] 谢秋菊. 基于模糊理论的猪舍环境适应性评价及调控模型研究[D]. 哈尔滨: 东北农业大学, 2015. XIE QJ. Environmental suitability assessment and control model development for A swine house based on fuzzy theory[D]. Harbin: Northeast Agricultural University, 2015. [27] 熊迎军, 沈明霞, 陆明洲, 等. 温室无线传感器网络系统实时数据融合算法[J]. 农业工程学报, 2012, 28(23):160-166. XIONG YJ, SHEN MX, LU MZ, et al. Algorithm of real time data fusion for greenhouse WSN system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23):160-166. [28] 段青玲, 肖晓琰, 刘怡然, 等. 基于改进型支持度函数的畜禽养殖物联网数据融合方法[J]. 农业工程学报, 2017, 33(S1):239-245. DUAN QL, XIAO XY, LIU YR, et al. Data fusion method of livestock and poultry farming Internet of Things based on improved support function [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1):239-245. [29] 匡亮, 施粯, 季云峰, 等. 改进型支持度函数的WSN 水质监测数据融合方法[J]. 农业工程学报, 2020, 36(16):192-200. KUANG L, SHI P, JI YF, et al. Data fusion method for water quality monitoring using WSN based on improved support function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16):192-200. [30] SHAFER G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976. [31] 程捷, 冯天玉, 黄世明, 等. 基于D-S 证据理论的猪舍环境状态识别研究[J]. 中国农机化学报, 2021, 42(6):50-54. CHENG J, FENG TY, HUANG SM, et al. Research on recognition of piggery environmental state based on D-S evidence theory [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6):50-54. [32] 陶鹏, 张洋瑞, 李兵, 等. 基于D-S 理论多源信息融合的电气设备故障诊断模型[J]. 计算机应用与软件, 2021, 38(7):73-79. TAO P, ZHANG YR, LI B, et al. Fault diagnosis model of electrical equipment based on d-s theory multi-source information fusion[J]. Computer Applications and Software, 2021, 38(7):73-79. [33] 朱保钏. 基于物联网猪舍参数测控及环境适宜度预测模型研究[D]. 镇江: 江苏大学, 2020. ZHU BC. Research on the prediction model of parameters measurement and control and environmental suitability of piggery based on Internet of Things[D]. Zhenjiang: Jiangsu University, 2020. [34] 梁佩瑜. 基于边界点原理和学习矢量量化的改进C4.5 决策树算法研究[D]. 武汉: 华中科技大学, 2021. LIANG PY. Research on improved C4.5 decision tree algorithm based on boundary point principle and learning vector quantization [D]. Wuhan: Huazhong University of Science and Technology, 2021. [35] NEJADMORAD MF, YAZDIZADEH A, POURESMAEL JFA. A new modified Elman neural network with stable learning algorithms for identification of nonlinear systems[M]. LEE R. Computer and Information Science. Cham: Springer, 2015:171-193. [36] 付晓. 北方寒地密闭猪舍环境优化控制方法研究[D]. 哈尔滨:东北农业大学, 2020. FU X. Study on environment optimal control method for confined pig house in northern china[D]. Harbin: Northeast Agricultural University, 2020. [37] 肖乾浩. 基于机器学习理论的机械故障诊断方法综述[J]. 现代制造工程, 2021(7):148-161. XIAO QH. Review on mechanical fault diagnosis methods based on machine learning theories[J]. Modern Manufacturing Engineering, 2021(7):148-161. [38] 余艳妮, 聂绍发, 廖青, 等. 传染病预测及模型选择研究进展[J]. 公共卫生与预防医学, 2018, 29(5):89-92. YU YN, NIE SF, LIAO Q, et al. Research progress on prediction and model selection of infectious diseases[J]. Journal of Public Health and Preventive Medicine, 2018, 29(5):89-92. [39] 刘春红, 杨亮, 邓河, 等. 基于ARIMA 和BP 神经网络的猪舍氨气浓度预测[J]. 中国环境科学, 2019, 39(6):2320-2327. LIU CH, YANG L, DENG H, et al. Prediction of ammonia concentration in piggery based on ARIMA and BP neural network[J]. China Environmental Science, 2019, 39(6):2320-2327. [40] 梁毅, 刘世洪. 基于遗传算法优化的BP 神经网络的组合预测模型方法研究[J]. 中国农业科学, 2012, 45(23):4924-4930. LIANG Y, LIU SH. Research on the combined forecast model method based on BP neural network improved by genetic algorithm [J]. Scientia Agricultura Sinica, 2012, 45(23):4924-4930. [41] DING SF, ZHANG YN, CHEN JR, et al. Research on using genetic algorithms to optimize Elman neural networks [J]. Neural Computing and Applications, 2013, 23(2):293-297. [42] 刘博, 王明烁, 李永, 等. 深度学习在时空序列预测中的应用综述[J]. 北京工业大学学报, 2021, 47(8):925-941. LIU B, WANG MS, LI Y, et al. Deep learning for spatio-temporal sequence forecasting: A survey [J]. Journal of Beijing University of Technology, 2021, 47(8):925-941. [43] 谢秋菊, 郑萍, 包军, 等. 基于深度学习的密闭式猪舍内温湿度预测模型[J]. 农业机械学报, 2020, 51(10):353-361. XIE QJ, ZHENG P, BAO J, et al. Thermal environment prediction and validation based on deep learning algorithm in closed pig house[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10):353-361. [44] 吴云昕. 基于改进LSTM 神经网络的非侵入式负荷辨识方法研究[D]. 沈阳: 东北大学, 2019. WU YX. Non-intrusive load identification method based on improved LSTM neural network[D]. Shenyang: Northeastern University, 2019. [45] MA CG, ZHAO DA. Research quality pig growth temperature control system [C]//2008 International Conference on Intelligent Computation Technology and Automation (ICICTA). Piscataway, New Jersey: IEEE, 2008:432-436. [46] 俞守华, 区晶莹, 张洁芳. 猪舍有害气体测定与温度智能控制算法[J]. 农业工程学报, 2010, 26(7):290-294. YU SH, OU JY, ZHANG JF. Harmful gases determination and temperature intelligent control algorithm in piggery [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7):290-294. [47] 谢秋菊, 苏中滨, Ni Ji-Qin, 等. 密闭式猪舍多环境因子调控系统设计及调控策略[J]. 农业工程学报, 2017, 33(6):163-170. XIE QJ, SU ZB, NI JQ, et al. Control system design and control strategy of multiple environmental factors in confined swine building [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6):163-170. [48] 章海清, 吴庆宪. 模糊控制算法分析及改进[J]. 南京航空航天大学学报, 1991, 23(4):9-16. ZHANG HQ, WU QX. Analysis and improvement of the fuzzy control algorithm [J]. Journal of Nanjing University of Aeronautics & Astronautics, 1991, 23(4):9-16. [49] TAO G. Multivariable adaptive control: a survey [J]. Automatica, 2014, 50(11):2737-2764. [50] 王威. 基于模糊控制算法的养猪场氨气浓度监控研究[D]. 阿拉尔: 塔里木大学, 2021. WANG W. Research on ammonia concentration monitoring in pig farm based on fuzzy control algorithm [D]. Ala'er:Tarim University, 2021. [51] ESFANDYARI M, ALI FM, ZOHREIE H. Adaptive fuzzy tuning of PID controllers [J]. Neural Computing and Applications, 2013, 23(1):19-28. [52] TU J, LIU B, WANG HJ. The Multiple parameters double fuzzy decoupling PID algorithm for pig breeding system[C]//20196th International Conference on Systems and Informatics(ICSAI). Piscataway, New Jersey: IEEE, 2019:649-654. [53] 冯江, 林升峰, 王鹏宇, 等. 基于自适应模糊PID 控制的猪舍温湿度控制系统研究[J]. 东北农业大学学报, 2018, 49(2):73-86. FENG J, LIN SF, WANG PY, et al. Piggery temperature and humidity control system based on adaptive fuzzy PID control[J]. Journal of Northeast Agricultural University, 2018, 49(2):73-86. [54] 朱哲辰. 随机非线性系统自适应模糊控制的若干问题研究[D]. 锦州: 渤海大学, 2021. ZHU ZC. Research on some problems of adaptive fuzzy control for stochastic nonlinear systems [D]. Jinzhou: Bohai University, 2021. [55] 徐济双, 焦俊, 李淼, 等. 融合改进A* 算法与模糊PID 的病死畜禽运输机器人路径规划与运动控制方法[J]. 智慧农业(中英文),2023, 5(4):127-136. XU JS, JIAO J, LI M, et al. Path plan﹞ning and motion control method for sick and dead animal transport robots integrating improved A* algorithm and fuzzy PID [J]. Smart Agriculture, 2023, 5(4):127-136.
[1] 岳健民, 朱君, 刘胤池, 赵宇亮, 贾楠, 陈超, 李斌. 猪舍智能作业机器人导航技术研究进展[J]. 中国猪业, 2024, 19(3): 15-23.
[2] 周光亮,许源峰,杨慧,李新云,赵云翔,刘向东. 全产业链猪育种体系构建的研究进展[J]. 中国猪业, 2024, 19(3): 59-67.
[3] 陆杰,李双智,张宝羽,张和军,申振才,钟萍,李秋月. 种猪生长性状校正公式研究[J]. 中国猪业, 2024, 19(3): 77-84.
[4] 李金海,李兴玉. 我国猪蓝耳病NADC34-like毒株的流行病学及致病性研究进展[J]. 中国猪业, 2024, 19(2): 59-66.
[5] 刘洋,乌云花. 不同规模生猪养殖成本收益分析——以山东省为例[J]. 中国猪业, 2024, 19(2): 82-94.
[6] 黄志洋,淡海锋,沈林園,朱砺,甘麦邻. 常见商业化猪精子计数板使用效果与测试分析[J]. 中国猪业, 2024, 19(1): 32-38.
[7] 张秦川, 李云辉, 张满义, 薛嘉熹, 孙雪梅, 张自瑞, 乔亚萱, 刘伟楠, 蒋松, 肖非, 高宏伟, 孙延鸣, 盛金良, 张彦兵. 金银花源miR2911靶向PEDV基因区域分析[J]. 中国猪业, 2024, 19(1): 53-56.
[8] 白雪,莫玉鹏,李茂宁,郑浩东,陈思宇,王晓晔. 一例规模化猪场流行性腹泻病的诊断与防控风险分析[J]. 中国猪业, 2024, 19(1): 57-62.
[9] 吴雨清, 王文赞, 朱志平. 我国生猪粪尿养分资源测算及土地承载力分析[J]. 中国猪业, 2024, 19(1): 63-72.
[10] 张海峰, 王林, 陈南, 张文涛, 王祖力. 生猪“保险+期货”模式中的成功案例[J]. 中国猪业, 2024, 19(1): 90-94.
[11] 鲍艳珍. 我国大规模生猪养殖全要素生产率的时空差异——基于Malmquist指数和超效率SBM模型[J]. 中国猪业, 2024, 19(1): 95-101.
[12] 谭莹. 价格下行期的生猪产业调研及预测分析[J]. 中国猪业, 2023, 18(6): 13-18.
[13] 张海峰, 陈南, 黄菊霞, 王林, 王祖力. 生猪期货上市对我国生猪产业的影响[J]. 中国猪业, 2023, 18(6): 19-22.
[14] 于行峰. 环境约束下桂林市生猪养殖业发展思考[J]. 中国猪业, 2023, 18(6): 23-30.
[15] 梁丹阳,李正遥,赵康宁,谢海刚,宁小敏,罗蔚. 生猪代养模式利益联结机制分析及发展思考——以陕西西安“龙头企业+规模养殖场”为例[J]. 中国猪业, 2023, 18(6): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!