中国猪业 ›› 2024, Vol. 19 ›› Issue (1): 39-46.doi: 10.16174/j.issn.1673-4645.2024.01.006

• 遗传繁殖 • 上一篇    

中外猪种间生长发育相关的差异候选基因筛选

陶璇,梁艳,杨雪梅,汪勇,杨跃奎,孔繁晶,王言,龚建军,朱康平,卫纪,杨少鹏,吕学斌,顾以韧,何志平   

  • 出版日期:2024-02-25 发布日期:2024-03-04

  • Online:2024-02-25 Published:2024-03-04

摘要: 通过对我国地方猪种与国外猪种比较,筛选与生长发育性状相关的差异候选基因,探索猪种之间生长发育差异的分子机制。分别选择5头内江猪和大约克夏猪进行全基因组重测序,以10 kb滑动窗口和1 kb步长计算群体间遗传分化指数(Fst)平均值,并依据Fst筛选差异SNPs。最终在内江猪与大约克夏猪的比较中分别鉴定出48 924个非同义SNP,它们高度影响2 490个基因。同时,在乙酰辅酶A乙酰转移酶1(ACAT1)、胰岛素样生长因子受体2(IGF2R)和胰岛素样生长因子2 mRNA结合蛋白3(IGF2BP3)基因中检测到3个非同义SNP,这可能影响乙酰辅酶A向乙酰乙酰辅酶A的转化和胰岛素信号通路的正常功能。本研究结果将为探索决定猪表型特征的遗传差异提供基础信息。

关键词: ACAT1;群体遗传分化指数;基因组重测序;分子育种;猪;SNP

[1] Giuffra E, Kijas JM, Amarger V, et al. The origin of the domestic pig: independent domestication and subsequent introgression[J]. Genetics, 2000, 154(4):1785-1791. [2] 国家畜禽遗传资源委员会. 中国畜禽遗传资源·猪志 [M]. 北京: 中国农业出版社, 2011. National Livestock and Poultry Genetic Resources Committee. Genetics of Chinese livestock and poultry resources: pig chronicles[M]. Beijing: China Agriculture Press, 2011. [3] 魏菁, 张子群, 王琦, 等. 中国地方猪种种质资源的保护与利用探讨[J]. 畜禽业, 2021, 32(3):43-44. Wei J, Zhang ZQ, Wang Q, et al. Exploration on the protection and utilization of local pig germplasm resources in China [J]. Livestock and Poultry Industry, 2021, 32(3):43-44. [4] Wilkinson S, Lu ZH, Megens HJ, et al. Signatures of diversifying selection in European pig breeds[J]. PLoS Genetics, 2013, 9(4):e1003453. doi: 0.1371/journal.pgen.1003453. [5] Wang K, Wu P, Yang Q, et al. Detection of selection signatures in Chinese landrace and yorkshire pigs based on genotyping-by-sequencing data[J]. Frontiers in Genetics, 2018, 9:119. doi:10.3389/fgene.2018.00119. [6] Ma Y, Wei J, Zhang Q, et al. A genome scan for selection signatures in pigs [J]. PLoS One, 2015, 10(3): e116850. doi: 10.1371/journal.pone.0116850. [7] Yang S, Li X, Li K, et al. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds [J]. BMC Genetics, 2014, 15:7. doi: 10.1186/1471-2156-15-7. [8] Zhang Z, Xiao Q, Zhang QQ, et al. Genomic analysis reveals genes affecting distinct phenotypes among different Chinese and western pig breeds [J]. Scientific Reports, 2018, 8 (1):13352. doi: 10.1038/s41598-018-31802-x. [9] Wang K, Wu PX, Chen D, et al. Detecting the selection signatures in Chinese Duroc, Landrace, Yorkshire, Liangshan, and Qingyu pigs[J]. Functional & Integrative Genomics, 2021, 21 (5-6):655-664. [10] Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms[J]. Genetics, 1973, 74(1):175-195. [11] Nielsen R. Molecular signatures of natural selection[J]. Annual Review of Genetics, 2005, 39(1):197-218. [12] Groenen MA, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution[J]. Nature, 2012, 491(7424):393-398. [13] Li YY. Comparing of backfat microRNAomes of Landrace and Neijiang pig by high-throughput sequencing [J]. Genes Genomics, 2021, 43(5):543-551. [14] 陈辉, 陈斌. 大白猪主要胴体性能测定及相关性分析[J]. 养猪, 2018(5):67-70. Chen H, Chen B. Measurement and correlation analysis of the main carcass performance of Yorkshire pigs [J]. Swine Production, 2018(5):67-70. [15] 王言, 钟志君, 何志平, 等. 四川 6 个地方猪种的育肥和胴体性能以及肉质和风味物质比较研究[J]. 畜牧与兽医, 2021, 53(1):7-12. Wang Y, Zhong ZJ, He ZP, et al. Comparative study on the fattening, carcass performance, meat quality and flavor substance of six local pig breeds in the Sichuan area [J]. Animal Husbandry & Veterinary Medicine, 2021, 53(1):7-12. [16] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. [17] Etherington GJ, Ramirez-Gonzalez RH, MacLean D, et al. Bio-samtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby [J]. Bioinformatics, 2015, 31(15):2565-2567. [18] Narasimhan V, Danecek P, Scally A, et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32(11):1749-1751. [19] Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15):2156-2158. [20] Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure [J]. Evolution, 1984, 38 (6):1358-1370. [21] 张晓光, 裴新华, 伍慧兰, 等. 疏水性脯氨酸离子液体化学修饰提升猪胰脂肪酶催化性能[J]. 高校化学工程学报, 2023, 37(2):268-275. Zhang XG, Pei XH, Wu HL, et al. Improving catalytic performance of porcine pancreatic lipase by chemical modification using hydrophobic proline ionic liquid[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(2):268-275. [22] Shan T, Wu T, Reng Y, et al. Breed difference and regulation of the porcine adipose triglyceride lipase and hormone sensitive lipase by TNFalpha [J]. Animal Genetics, 2009, 40 (6):863-870. [23] Zhao SM, Ren LJ, Chen L, et al. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition[J]. Lipids, 2009, 44(11):1029-1037. [24] Guo XH, Qin BY, Yang XF, et al. Comparison of carcasstraits, meat quality and expressions of MyHCs in muscles between Mashen and Large White pigs[J]. Italian Journal of Animal Science, 2019, 18(1):1410-1418. [25] Goudarzi A. The recent insights into the function of ACAT1: a possible anti-cancer therapeutic target[J]. Life Sciences, 2019, 232:116592. doi: 10.1016/j.lfs.2019.116592. [26] Yang H, Yang K, Gu HH, et al. Dynamic post-translational modifications in obesity[J]. Journal of Cellular and Molecular Medicine, 2020, 24(3):2384-2387. [27] Dharuri H, Peter AC, van Klinken JB, et al. Downregulation of the acetyl-CoA metabolic network in adipose tissue of obese diabetic individuals and recovery after weight loss [J]. Diabetologia, 2014, 57(11):2384-2392. [28] Ramenskaia GV, Melnik EV, Petukhov AE. Phospholipase D: its role in metabolism processes and disease development[J]. Biomeditsinskaya Khimiya, 2018, 64(1):84-93. [29] McIntosh AL, Atshaves BP, Martin GG, et al. Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice [J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 2019, 1864(7):985-1004. [30] Wang G, Bonkovsky HL, de Lemos A, et al. Recent insights into the biological functions of liver fatty acid binding protein 1[J]. Journal of Lipid Research, 2015, 56(12):2238-2247. [31] Li MZ, Li XW, Zhu L, et al. Differential expression analysis and regulatory network reconstruction for genes associated with muscle growth and adipose deposition in obese and lean pigs [J]. Progress in Natural Science: Materials International, 2008, 18(4):387-399. [32] Nielsen J, Christiansen J, Lykke-Andersen J, et al. A family of insulin-like growth factor Ⅱ mRNA-binding proteins represses translation in late development[J]. Molecular & Cellular Biology, 1999, 19(2):1262-1270. [33] Christiansen J, Kolte AM, Hansen T, et al. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes[J]. Journal of Molecular Endocrinology, 2009, 43(5):187-195.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!