中国猪业 ›› 2024, Vol. 19 ›› Issue (1): 25-31.doi: 10.16174/j.issn.1673-4645.2024.01.004

• 营养饲料 • 上一篇    

复合营养性膏剂对新生仔猪生长性能的影响

赵勤辉,许婷婷,刘家,汤海鸥   

  • 出版日期:2024-02-25 发布日期:2024-03-04

  • Online:2024-02-25 Published:2024-03-04

摘要: 为了研究复合营养性膏剂对新生仔猪生长性能的影响,特选取136窝1 465头新生仔猪,其中124窝1 324头健康仔猪和12窝141 头弱小仔猪,平均分成2组。试验组仔猪初生后12 h内口服2 mL复合营养性膏剂,弱仔猪初生后12 h内再口服2 mL膏剂,对照组不做其他处理。分别记录仔猪的初生重、哺乳7 d成活率、断奶数、断奶重、哺乳成活率、正品率等数据。结果发现、新生健仔猪 12 h内口服2 mL营养膏剂,可极显著提升哺乳7 d的成活率(P<0.01)和断奶成活率(P<0.01),可极显著提升断奶正品率(P<0.01)。新生弱仔12 h内口服2 mL营养膏剂,12 h内再口服1次,可极显著提升哺乳7 d成活率(P<0.01)和断奶成活率(P<0.01);可极显著提升断奶正品率(P<0.01)。由此得出,新生仔猪口服复合营养性膏剂,可显著提升仔猪成活率和生长性能。

关键词: 新生仔猪;生长性能;成活率;复合营养性膏剂

[1] Emiline S, Nicholas G, Suzanne M et al. The Use of Attractants to Stimulate Neonatal Piglet Interest in Rope Enrichment[J]. Animals, 2022, 12, 211. [2] Andersen I, Tajet G, Haukvik I, et al. Relationship between postnatal piglet mortality, environmental factors and management around farrowing in herds with loose-housed, lactating sows[J]. Acta Agriculturae Scandinavica, Section A — Animal Science, 57:1, 38-45. [3] Weary D, Phillips P, Pajor E, et al. Crushing of Piglets by Sows: Effects of litter features, pen features and sow behaviour[J]. Applied Animal Behaviour Science, 1998, 61, 103–111. [4] Mota-Rojas D, Martínez-Burnes J, Villanueva-García D, et al. Animal welfare in the newborn piglet: a review [J]. Veterinarni Medicine, 2012, 57: 338-349. [5] Muns R, Nuntapaitoon M, Tummaruk P. Non-infectious causes of pre-weaning mortality in piglets [J]. Livestock Science, 2016, 184:46-57. [6] Herpin P, Damon M, Dividich J. Development of thermoregulation and neonatal survival in pigs [J]. Livestock Production Science, 2002, 78:25-45. [7] Ying L, Zhijun Z, Lihuai Y, et al. Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments[J]. Scientific Reports. 2019, 9, 3453. [8] Rieger J, Janczyk P, Hunigen H, et al. Intraepithelial lymphocyte numbers and histomorphological parameters in the porcine gut after Enterococcus faecium NCIMB 10415 feeding in a Salmonella Typhimurium challenge [J]. Veterinary immunology and immunopathology, 2015, 164(1-2): 40-50. [9] Bednorz C, Guenther S, Oelgeschlager K, et al. Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa [J]. Applied and environmental microbiology, 2013, 79(24): 7896-7904. [10] Feldpausch A, Jourquin J, Bergstrom R, et al. Birth weight threshold for identifying piglets at risk for preweaning mortality[J]. Translational Animal Science, 2019, 3, 633–640. [11] Riddersholm V, Bahnsen I, Bruun S, et al. Identifying risk factors for low piglet birth weight, high within‐litter variation and occurrence of intrauterine growth-restricted piglets in hyperprolific sows[J]. Animals, 2021, 11(9), 2731. [12]马洪庆,刘霞. 中链脂肪酸的理化特性、代谢特点、功能特性及在猪生产中的应用[J].饲料研究,2022,45(11) :143-148. [13] 陈进超.妊娠后期和哺乳期饲粮添加不同链长脂肪酸对母猪繁殖性能和哺乳仔猪生长性能的影响[D].2019. [14] Wu G, Bazer W, Wallace L, et al. Intra‐uterine growth retardation: Implications for the animal sciences[J]. Journal of Animal Science, 2006, 84, 2316–2337. [15] Tuchscherer M, Puppe B, Tuchscherer A, et al. Early identification of neonates at risk: traits of newborn piglets with respect to survival[J]. Theriogenology, 2000, 54: 371–388. [16] 万善霞,滑静,张淑萍.牛初乳IgG对仔猪增重和血液指标的影响[J].动物科学与动物医学. 2004(06),34-35. [17] Orozco H, Mota D, Bonilla H, Trujillo E, et al. Effects of administration of caffeine on metabolic variables in neonatal pigs with peripartum asphyxia[J]. Am. J. Vet. Res. 2010, 71, 1214–1219. [18] Brown K, Uwiera R., Kalmokoff L, et al. Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives [J]. International Journal of Antimicrobial Agents, 2017, 49(1): 12-24. [19] Lee H, Hosseindoust R, Kim S, et al. Bacteriophages as a promising anti-pathogenic option in creep-feed for suckling piglets: targeted to control Clostridium spp. and coliforms faecal shedding[J]. Livestock Science. 2016, 191, 161–164. [20] Sansom F, Gleed T. The ingestion of sow’s faeces by suckling piglets[J]. Br. J. Nutr. 1981,46, 451–456. [21] Joseph M, Kwang Y K, Abdolreza H, et al. Effects of Lactobacillus salivarius isolated from feces of fast?growing pigs on intestinal microbiota and morphology of suckling piglets[J]. Scientific Reports. 2021, 11, 6757. [22] Bartlett G. Clinical practice. Antibiotic-associated diarrhea [J]. The New England journal of medicine, 2002, 346(5): 334-339. [23] Yang K. M, Jiang Z. Y, Zheng C. T, et al. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88 [J]. Journal of animal science, 2014, 92(4): 1496-1503. [24] Yi Huang, Li Ya Li, Qin Huang, et al. Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of suckling piglets [J]. Pakistan Veterinary Journal, 2012, 32(1): 2074-7764. [25] Herfel T. M, Jacobi S. K, Lin X, et al. Dietary supplementation of Bifidobacterium longum strain AH1206 increases its cecal abundance and elevates intestinal interleukin-10 expression in the neonatal piglet [J]. Food & Chemical Toxicology, 2013, 60(10): 116-122.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!