China Swine Industry ›› 2024, Vol. 19 ›› Issue (1): 11-18.doi: 10.16174/j.issn.1673-4645.2024.01.002

• Nutrition and Feed • Previous Articles     Next Articles

  

  • Online:2024-03-04 Published:2024-03-04
[1] 符璐, 苗健, 张国华, 等. 维生素D调控动物脂肪形成及脂肪组织代谢的研究进展[J]. 动物营养学报, 2023, 35(9):5545-5554. Fu L, Miao J, Zhang GH, et al. Research advances in regulation of animal adipogenesis and adipose tissue metabolism by vitamin D3[J]. Chinese Journal of Animal Nutrition, 2023, 35(9):5545-5554. [2] Tian XQ, Chen TC, Matsuoka LY, et al. Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin[J]. The Journal of biological chemistry, 1993, 268(20):14888-14892. [3] Holick MF. Vitamin D status: measurement, interpretation, and clinical application[J]. Annals of epidemiology, 2009, 19(2):73-78. [4] Holick MF, Chen TC, Lu Z, et al. Vitamin D and skin physiology: a D-lightful story[J]. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 2007, 22(2):28-33. [5] Christakos S, Ajibade DV, Dhawan P, et al. Vitamin D: metabolism. Rheumatic Disease Clinics, 2012, 38(1):1-11. [6] Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism[J]. International journal of molecular sciences, 2020, 21(18):6573. [7] Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects[J]. Physiological reviews, 2016, 96(1):365-408. [8] 王青. 25-羟基维生素D3对不同阶段妊娠母猪及仔猪体液免疫和生产性能的影响[D]. 重庆: 西南大学, 2023. Wang Q. Effects of 25-hydroxyvitamin D3 on humoralimmunity and production performance indifferent gestation stages of sows and piglets[D]. Chongqing: Southwest University, 2023. [9] Vranken L, Fontaine C, Souberbielle JC, et al. 24,25-dihydroxyvitamin D: a new biomarker in non-parathyroid hypercalcemia diagnosis[J]. In Clinical Laboratory International, 2018(42):23-25. [10] Jones G. Metabolism and biomarkers of vitamin D[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2012(243):7-13. [11] Marcinkowska E. A run for a membrane vitamin D receptor[J]. Biological signals and receptors, 2001, 10(6):341-349. [12] Xiaoyu Z, Payal B, Melissa O, et al. 1alpha,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival[J]. The Journal of steroid biochemistry and molecular biology, 2007, 103(3-5):457-461. [13] Finch JL, Brown AJ, Slatopolsky E. Differential effects of 1,25-dihydroxy-vitamin D3 and 19-nor-1,25-dihydroxy-vitamin D2 on calcium and phosphorus resorption in bone[J]. Journal of the American Society of Nephrology, 1999, 10(5):980-985. [14] Protiva P, Pendyala S, Nelson C, et al. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human colon: a human crossover trial[J]. American Journal of Clinical Nutrition, 2016, 103(5):1224-1231. [15] Asano L, Watanabe M, Ryoden Y, et al. Vitamin D metabolite, 25-Hydroxyvitamin D, regulates lipid metabolism by Inducing degradation of SREBP/SCAP[J]. Cell Chemical Biology, 2017(24), 207-217. [16] Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism[J]. International Journal of Molecular Sciences, 2020, 21(18):6573. [17] Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes?[J]. Experimental Dermatology, 2020(29):876–884. [18] Olszewska AM, Nowak JI, Myszczynski K, et al. Dissection of an impact of VDR and RXRA on the genomic activity of 1,25-(OH)2-D3 in A431 squamous cell carcinoma[J]. Molecular and Cellular Endocrinology, 2024(582):112-124. [19] Jakobsen J, Maribo H, Bysted A, et al. 25-hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs-but the meat produced has a lower content of vitamin D[J]. British Journal of Nutrition, 2007, 98(5):908-913. [20] Haussler MR, Whitfield GK, Kaneko I, et al. Molecular mechanisms of vitamin D action[J]. Calcified Tissue International, 2013, 92(2):77-98. [21] Adler CP, Bredlein F, Limberg J, et al. Rickets caused by vitamin D deficiency[J]. Die Medizinische Welt, 1979, 30(4):141. [22] Lips P, Schoor NM. The effect of vitamin D on bone and osteoporosis[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2011, 25(4):585-591. [23] 田程程, 张晶, 符璐, 等. 1,25(OH)2D3通过调节氧化还原状态影响猪前体脂肪细胞分化[J]. 甘肃畜牧兽医, 2022, 52(4):35-40. Tian CC, Zhang J, Fu L, et al. 1,25(OH)2D3 affects porcine preadipocyte differentiation by regulating redox state[J]. Gansu Animal Husbandry and Veterinary, 2022, 52(4):35-40. [24] 岳小婧, 张晶, 马姝雯, 等. 1,25(OH)2D3以双向方式影响猪前体脂肪细胞增殖分化的研究[J]. 中国畜牧兽医, 2021, 48(7):2349-2357. Yue XJ, Zhang J, Ma SW, et al. 1,25(OH)2D3 affects proliferation and differentiationof porcine preadipocytes in a biphasic manner[J]. Chinese Animal Husbandry and Veterinary Medicine, 2021, 48(7):2349-2357. [25] B?ckesj? CM, Li Y, Lindgren U, et al. Activation of Sirtl decreases adipocyte formation during ostcoblast differentiation of mesenchymal stem cells[J]. Journal of Bone and Mineral Research, 2006, 21(7):993-1002. [26] 张尧, 李晓莉, 张岩. 维生素D对骨髓基质干细胞成骨分化的分子调控研究进展[J]. 中国药理学通报, 2016, 32(10):1337-1340. Zhang Y, Li XL, Zhang Y, et al. Research progress on molecular regulatory effects of vitamin D on osteogenic differentiation of bone marrow stromal cells[J]. Chinese Pharmacological Bulletin, 2016, 32(10):1337-1340. [27] 关晓慧, 王君, 郭菲, 等. 1,25-二羟基维生素D3抑制脂肪细胞分化作用的研究[J]. 天津医药, 2013, 41(10):981-984. Guan XH, Wang J, Guo F, et al. Inhibitory effects of 1,25-dihydroxy-vitamin D3 on differentiation of adipocytes[J]. Tianjin Medical Journal, 2013, 41(10):981-984. [28] Boyan BD, Chen J, Schwartz Z. Mechanism of Pdia3-dependent 1α,25- dihydroxy vitamin D3 signaling in musculoskeletal cells[J]. Steroids, 2012, 77(10):892-896. [29] Hu R, Li L, Liang L, et al. 25(OH)D3 improves granulosa cell proliferation and IVF pregnancy outcomes in patients with endometriosis by increasing G2M+S phase cells[J]. Reproductive Biology and Endocrinology, 2023, 21(1):115. [30] Casteels K, Bouillon R, Waer M, et al. Immunomodulatory effects of 1,25-dihydroxyvitamin D3[J]. Current Opinion in Nephrology and Hypertension, 1995(4):313-318. [31] Lemire JM. Immunomodulatory role of 1,25-dihydroxyvitamin D3[J]. Journal of Cellular Biochemistry, 1992(49):26–31. [32] Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, hormone, and immunomodulator[J]. Nutrients, 2018, 10(11):1656. [33] Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. International Journal of Molecular Sciences. 2020 ,21(18):6573. [34] Bouillon R, Bikle D. Vitamin D Metabolism Revised: Fall of Dogmas[J]. Journal of Bone and Mineral Research, 2019(34):1985-1992. [35] Miao D, Goltzman D. Mechanisms of action of vitamin D in delaying aging and preventing disease by inhibiting oxidative stress[J]. Vitamins and Hormones, 2023(121):293-318. [36] He J, Wang H, Shi J, et al. 1,25-Dihydroxyvitamin D deficiency accelerates male reproductive senescence in aging mice and 1,25(OH)2D3 alleviates oxidative stress via NF-κB/SOD[J]. American Journal of physiology Endocrinology and metabolism, 2021, 320(4):E732-E746. [37] Chen G, Zhang Y, Yu S, et al, Miao D: Bmi1 Overexpression in Mesenchymal Stem Cells Exerts Antiaging and Antiosteoporosis Effects by Inactivating p16/p19 Signaling and Inhibiting Oxidative Stress[J]. Stem cells, 2019, 37(9):1200-1211. [38] Sun W, Qiao W, Zhou B, et al. Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition [J]. Metabolism, 2018(88):61-71. [39] Chen H, Hu X, Yang R, et al. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)2D deficiency[J]. International Journal of Biological Sciences, 2020, 16(14):2712-2726. [40] Chen L, Yang R, Qiao W, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling[J]. Aging cell, 2019, 18(3):e12951. [41] Sun J, Zhong W, Gu Y, et al. 1,25-(OH)2-D3 suppresses COX-2 up-regulation and thromboxane production in placental trophoblast cells in response to hypoxic stimulation[J]. Placenta, 2014, 35(2):143-145. [42] Xu J, Jia X, Gu Y, et al. Vitamin D Reduces Oxidative Stress-Induced Procaspase-3/ROCK1 Activation and MP Release by Placental Trophoblasts[J]. Journal of Clinical Endocrinology & Metabolism, 2017, 102(6):2100-2110. [43] Codo?er-Franch P, Tavárez-Alonso S, Simó-Jordá R, et al. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children[J]. Journal of Pediatrics, 2012, 161(5):848–854. [44] Anandabaskar N, Selvarajan S, Dkhar SA, et al. Effect of vitamin D supplementation on vascular functions and oxidative stress in type 2 Diabetic patients with vitamin D Deficiency[J]. Indian Journal of Endocrinology & Metabolism, 2017, 21(4):555–563. [45] Zhan D, Zhao J, Shi Q, et al. 25-hydroxyvitamin D3 inhibits oxidative stress and ferroptosis in retinal microvascular endothelial cells induced by high glucose through down-regulation of miR-93[J]. BMC Ophthalmol, 2023, 23(1):22. [46] 张连华. 25-羟基维生素D3对猪生产性能、肠道健康和骨品质的研究[D]. 北京: 中国农业大学, 2021. Zhang LH. Studies on 25-hydroxyvitamin D3 on pig performance, intestinal health and bone quality[D]. Beijing: China Agricultural University, 2021. [47] Upadhaya SD, Jung YJ, Kim YM, et al. Effects of dietary supplementation with 25-OH-D3 during gestation and lactation on reproduction, sow characteristics and piglet performance to weaning 25-hydroxyvitamin D3 in sows[J]. Animal Feed Science and Technology, 2021(271-):271. [48] Thayer MT, Nelssen JL, Langemeier AJ, et al. PSVII-14 The effects of maternal dietary supplementation of cholecalciferol (vitamin D3) and 25(OH)D3 on progeny muscle fiber measures[J]. Journal of Animal Science, 2019, 97(2):218. [49] Zhang L, Hu J, Li M. et al. Maternal 25-hydroxycholecalciferol during lactation improves intestinal calcium absorption and bone properties in sow-suckling piglet pairs[J]. Journal of Bone and Mineral Metabolism, 2019(37):1083-1094. [50] Zhou X, Zou Y, Xu Y, et al. Dietary Supplementation of 25-Hydroxyvitamin D3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets[J]. Antioxidants (Basel). 2022, 11(9):1750. [51] Zhang L, Yang M, Piao X. Effects of 25-hydroxyvitamin D3 on growth performance, serum parameters, fecal microbiota, and metabolites in weaned piglets fed diets with low calcium and phosphorus.[J]. Journal of the Science of Food and Agriculture, 2022(102): 597-606. [52] Yang J, Tian G, Chen D, et al. Dietary 25-Hydroxyvitamin D3 Supplementation Alleviates Porcine Epidemic Diarrhea Virus Infection by Improving Intestinal Structure and Immune Response in Weaned Pigs[J]. Animals(Basel), 2019, 9(9):627. [53] Von Rosenberg SJ, Weber GM, Erhardt A, et al. Tolerance evaluation of overdosed dietary levels of 25-hydroxyvitamin D3 in growing piglets[J]. Journal of Animal Physiology and Animal Nutrition(Berl), 2016, 100(2):371-380. [54] 瞿红侠, 王建国, 陈冠华, 等. 肉鸡日粮中25-羟基维生素D3与维生素D3生物学效价比较[J]. 中国饲料, 2015(20):25-28,32. Qu HX, Wang JG, Chen GH, et al. Comparison of biological potency of 25-hydroxyvitamin D3 and vitamin D3 in broiler diets[J]. China Feed, 2015(20):25-28,32. [55] 何蕾, 段延民, 张宁, 等. 25-羟基维生素D3对肉鸡生长性能、骨骼发育及小肠磷转运蛋白基因表达的影响[J]. 家畜生态学报, 2023, 44(11):24-28. He L, Duan YM, Zhang N, et al. Effects of 25-hydroxycholecalciferol on growth performance, bone development and phosphate tiansporter gene expressions in the small intestine of broiler chickens[J]. Journal of Domestic Animal Ecology, 2023, 44(11):24-28. [56] 张金龙, 张宁, 杨雪, 等. 25-羟基维生素D3对肉鸡生长性能、骨骼矿化及肠道维生素D受体基因表达的影响[J]. 中国饲料, 2017(24):24-29. Zhang JL, Zhang N, Yang X, et al. Effects of 25-hydroxyvitamin D3 on growth performance, bone mineralization and intestinal vitamin D receptor gene expression in broiler chickens[J]. China Feed, 2017(24):24-29. [57] Abascal-Ponciano GA, Leiva SF, Flees JJ, et al. Dietary 25-Hydroxyvitamin D3 Supplementation Modulates Intestinal Cytokines in Young Broiler Chickens[J]. Frontiers in Veterinary Science, 2022(9):947276. [58] Vazquez JR, Gómez GV, López CC, et al. Effects of 25-hydroxycholecalciferol with two D3 vitamin levels on production and immunity parameters in broiler chickens[J]. Journal of Animal Physiology and Animal Nutrition, 2018(102): e493–e497. [59] Adhikari R, White D, House JD, et al. Effects of additional dosage of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3 on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens[J]. Poultry Science, 2020, 99(1): 364-373. [60] Chen C, Turner B, Applegate TJ, et al. Role of long-term supplementation of 25-hydroxyvitamin D3 on laying hen bone 3-dimensional structural development[J]. Poultry Science, 2020, 99(11):5771-5782. [61] Chen C, Turner B, Applegate TJ, et al. Role of long-term supplementation of 25-hydroxyvitamin D3 on egg production and egg quality of laying hen[J]. Poultry Science, 2020, 99(12):6899-6906. [62] Jing X, Wang Y, Song F, et al. A Comparison between Vitamin D3 and 25-Hydroxyvitamin D3 on Laying Performance, Eggshell Quality and Ultrastructure, and Plasma Calcium Levels in Late Period Laying Hens[J]. Animals(Basel), 2022(12):2824.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!