China Swine Industry ›› 2024, Vol. 19 ›› Issue (1): 84-89.doi: 10.16174/j.issn.1673-4645.2024.01.012
• Digital Intelligent Equipment Process • Previous Articles Next Articles
[1]司永胜, 安露露, 刘刚, 等. 基于Kinect相机的猪体理想姿态检测与体尺测量[J]. 农业机械学报, 2019, 50(1):58-65. Si YS, An LL, Liu G, et al.Ideal Posture Detection and Body Size Measurement of Pig Based on Kinect[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):58-65. [2]滕光辉, 申志杰, 张建龙, 等. 基于Kinect传感器的无接触式母猪体况评分方法[J]. 农业工程学报, 2018, 34(13): 211-217. Teng GH, Shen ZJ, Zhang JL, et al. Non-contact sow body condition scoring method based on Kinect sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 211-217. [3] Shi S, Yin L, Liang SH, et al. Research on 3D surface reconstruction and body size measurement of pigs based on multi-view RGB-D cameras[J]. Computers and Electronics in Agriculture, 2020, 175: 105543-105552. [4] 尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23):201-208. Yin L, Cai GY, Tian XH, et al. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 201-208. [5]刘同海, 滕光辉, 张盛南, 等. 基于点云数据的猪体曲面三维重建与应用[J]. 农业机械学报, 2014, 45(6):291-295. Liu TH, Teng GH, Zhang SN, et al. Reconstruction and Application of 3D Pig Body Model Based on Point Cloud Data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6):291-295. [6] Yuan W, Khot T, Held D, et al. Pcn: point completion network[C]//In: 2018 international conference on 3D vision (3DV). IEEE, 2018. [7] Tchapmi LP, Kosaraju V, Rezatofighi H, et al. Topnet: structural point cloud decoder[C]//In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. [8] Xie H, Yao H, Zhou S, et al. Grnet: Gridding residual network for dense point cloud completion[C]//In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX. Cham: Springer International Publishing, 2020. [9] Xiang P, Wen X, Liu YS, et al. Snowflakenet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [10] Yu X, Rao Y, Wang Z, et al. Pointr: Diverse point cloud completion with geometry-aware transformers[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [11] Yu X, Rao Y, Wang Z, et al. AdaPoinTr: Diverse point cloud completion with adaptive geometry-aware transformers[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2023, 45(12): 14114-14130. [12] Zhou H, Cao Y, Chu W, et al. Seedformer: patch seeds based point cloud completion with upsample transformer[C]//In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III. Cham: Springer Nature Switzerland, 2022. [13] 曾安, 彭杰威, 刘畅, 等. 基于多尺度几何感知Transformer的植物点云补全网络[J]. 农业工程学报, 2022, 38(4): 198-205. Zeng A, Peng JW, Liu C, et al. Plant point cloud completion network based on multi-scale geometry-aware point Transformer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 198-205. [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv, 2017. doi: 10.48550/arXiv.1706.03762. [15] Qi CR, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. 2017. doi: 10.48550/arXiv.1706.02413. [16] Zhao H, Jiang L, Jia J, et al. Point transformer[C]//In: Proceedings of the IEEE/CVF international conference on computer vision, 2021. [17] Wang Y, Sun Y, Liu Z, et al. Dynamic graph cnn for learning on point clouds[J]. Acm Transactions On Graphics (tog), 2019, 38(5):1-12. [18] Fan H, Su H, Guibas LJ. A point set generation network for 3d object reconstruction from a single image[C]//In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. [19] Wu T, Pan L, Zhang JZ, et al. Balanced chamfer distance as a comprehensive metric for point cloud completion[J]. Advances in Neural Information Processing Systems, 2021, 34: 29088-29100. |
No related articles found! |
|